Spectral analysis and Feller property for quantum Ornstein-Uhlenbeck semigroups

被引:34
|
作者
Cipriani, F
Fagnola, F
Lindsay, JM
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
[3] Univ Nottingham, Dept Math, Nottingham NG7 2RD, England
关键词
D O I
10.1007/s002200050773
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of dynamical semigroups arising in quantum optics models of masers and lasers is investigated. The semigroups are constructed, by means of noncommutative Dirichlet forms, on the full algebra of bounded operators on a separable Hilbert space, The explicit action of their generators on a core in the domain is used to demonstrate the Feller property of the semigroups, with respect to the C*-subalgebra of compact operators. The Dirichlet forms are analysed and the L-2-spectrum together with eigenspaces are found. When reduced to certain maximal abelian subalgebras, the semigroups give rise to the Markov semigroups of classical Ornstein-Uhlenbeck processes on the one hand, and of classical birth-and-death processes on the other.
引用
收藏
页码:85 / 105
页数:21
相关论文
共 50 条
  • [21] Morphological Counterpart of Ornstein-Uhlenbeck Semigroups and PDEs
    Angulo, Jesus
    DISCRETE GEOMETRY AND MATHEMATICAL MORPHOLOGY, DGMM 2022, 2022, 13493 : 169 - 181
  • [22] Nonsymmetric Ornstein-Uhlenbeck semigroups in Banach spaces
    van Neerven, JMAM
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 155 (02) : 495 - 535
  • [23] On analytic Ornstein-Uhlenbeck semigroups in infinite dimensions
    Jan Maas
    Jan van Neerven
    Archiv der Mathematik, 2007, 89 : 226 - 236
  • [24] Hypercyclic Semigroups Generated by Ornstein-Uhlenbeck Operators
    Conejero, Jose A.
    Mangino, Elisabetta M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (01) : 101 - 109
  • [25] The Ornstein-Uhlenbeck bridge and applications to Markov semigroups
    Goldys, B.
    Maslowski, B.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (10) : 1738 - 1767
  • [26] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44
  • [27] Ornstein-Uhlenbeck semigroups on Riemannian path spaces
    Cruzeiro, AB
    Zhang, XC
    RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS, 2004, : 136 - 150
  • [28] MEYERS INEQUALITIES FOR GENERALIZED ORNSTEIN-UHLENBECK SEMIGROUPS
    SONG, SQ
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (08): : 993 - 996
  • [29] On analytic Ornstein-Uhlenbeck semigroups in infinite dimensions
    Maas, Jan
    van Neerven, Jan
    ARCHIV DER MATHEMATIK, 2007, 89 (03) : 226 - 236
  • [30] Quantum Ornstein–Uhlenbeck semigroups
    Rguigui H.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (2) : 159 - 175