The Role of Long Polar Fimbriae in Escherichia coli O104:H4 Adhesion and Colonization

被引:31
|
作者
Ross, Brittany N. [1 ]
Rojas-Lopez, Maricarmen [1 ]
Cieza, Roberto J. [1 ]
McWilliams, Brian D. [1 ,2 ,3 ]
Torres, Alfredo G. [1 ,2 ,3 ]
机构
[1] Univ Texas Med Branch, Dept Microbiol & Immunol, Galveston, TX 77555 USA
[2] Univ Texas Med Branch, Dept Pathol, Galveston, TX 77555 USA
[3] Univ Texas Med Branch, Sealy Ctr Vaccine Dev, Galveston, TX 77555 USA
来源
PLOS ONE | 2015年 / 10卷 / 10期
关键词
AGGREGATIVE ADHERENCE; EXPRESSION; O157/H7; CELLS; IDENTIFICATION; MARKERS; OPERON;
D O I
10.1371/journal.pone.0141845
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A renewed interest in Shiga toxin-producing Escherichia coli (STEC) strains was sparked due to the appearance of an outbreak in 2011, causing 3,816 diarrheal cases and some deaths in Europe. The causative strain was classified as enteroaggregative E. coli of serotype O104:H4 that had acquired Shiga toxin genes. The ability of STEC O104:H4 to cause disease relies greatly on the bacteria's capacity to colonize, persist, and produce Shiga toxin. However, not much is known about the colonization factors of this strain. Because long polar fimbriae (lpf) lpf1 and lpf2 operons encode important colonization factors in other STEC isolates and E. coli O104:H4 possesses both loci, we hypothesized that Lpf is required for adhesion and colonization. In this study, isogenic lpfA1 and lpfA2 major fimbrial subunit mutants were constructed. To determine their role in O104:H4' s virulence, we assessed their ability to adhere to non-polarized and polarized intestinal epithelial cells. The.lpfA1 showed decreased adherence in both cell systems, while the.lpfA2 only showed a decrease in adherence to polarized Caco-2 cells. We also tested the O104:H4 mutants' ability to form biofilm and found that the.lpfA1 was unable to form a stable biofilm. In an in vivo murine model of intestinal colonization, the.lpfA1 had a reduced ability to colonize the cecum and large intestine, consistent with the in vitro data. Further, we tested the lpfA1 mutants' ability to compete against the wild type. We found that in the in vitro and in vivo models, the presence of the wild type O104:H4 facilitates increased adherence of the.lpfA1 to levels exceeding that of the wild type. Overall, our data demonstrated that Lpf1 is one of the factors responsible for O104:H4 intestinal adhesion and colonization.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] The Worst of Both Worlds: Examining the Hypervirulence of the Shigatoxigenic/Enteroaggregative Escherichia coli O104:H4
    Steiner, Theodore S.
    JOURNAL OF INFECTIOUS DISEASES, 2014, 210 (12): : 1860 - 1862
  • [42] Virulent Bacteriophages Can Target O104:H4 Enteroaggregative Escherichia coli in the Mouse Intestine
    Maura, Damien
    Galtier, Matthieu
    Le Bouguenec, Chantal
    Debarbieux, Laurent
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2012, 56 (12) : 6235 - 6242
  • [43] A non-beta-lactam antibiotic inhibitor for enterohemorrhagic Escherichia coli O104:H4
    Haoqi Wang
    Arul Jayaraman
    Rani Menon
    Varun Gejji
    R. Karthikeyan
    Sandun Fernando
    Journal of Molecular Medicine, 2019, 97 : 1285 - 1297
  • [44] Lability of the pAA Virulence Plasmid in Escherichia coli O104:H4: Implications for Virulence in Humans
    Zhang, Wenlan
    Bielaszewska, Martina
    Kunsmann, Lisa
    Mellmann, Alexander
    Bauwens, Andreas
    Koeck, Robin
    Kossow, Annelene
    Anders, Agnes
    Gatermann, Soeren
    Karch, Helge
    PLOS ONE, 2013, 8 (06):
  • [45] Outbreak of Escherichia coli O104:H4 haemolytic uraemic syndrome in France: outcome with eculizumab
    Delmas, Yahsou
    Vendrely, Benoit
    Clouzeau, Benjamin
    Bachir, Hiba
    Hoang-Nam Bui
    Lacraz, Adeline
    Helou, Sebastien
    Bordes, Cecile
    Reffet, Armel
    Llanas, Brigitte
    Skopinski, Sophie
    Rolland, Patrick
    Gruson, Didier
    Combe, Christian
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2014, 29 (03) : 565 - 572
  • [46] Host-specific differences in the contribution of an ESBL IncI1 plasmid to intestinal colonization by Escherichia coli O104:H4
    Giles, M.
    Cawthraw, S. A.
    AbuOun, M.
    Thomas, C. M.
    Munera, D.
    Waldor, M. K.
    La Ragione, R. M.
    Ritchie, J. M.
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2018, 73 (06) : 1579 - 1585
  • [47] Comparative virulence characterization of the Shiga toxin phage-cured Escherichia coli O104:H4 and enteroaggregative Escherichia coli
    Haarmann, Nadja
    Berger, Michael
    Kouzel, Ivan U.
    Mellmann, Alexander
    Berger, Petya
    INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2018, 308 (07) : 912 - 920
  • [48] Epidemic Profile of Shiga-Toxin-Producing Escherichia coli O104:H4 Outbreak in Germany
    Frank, Christina
    Werber, Dirk
    Cramer, Jakob P.
    Askar, Mona
    Faber, Mirko
    an der Heiden, Matthias
    Bernard, Helen
    Fruth, Angelika
    Prager, Rita
    Spode, Anke
    Wadl, Maria
    Zoufaly, Alexander
    Jordan, Sabine
    Kemper, Markus J.
    Follin, Per
    Muller, Luise
    King, Lisa A.
    Rosner, Bettina
    Buchholz, Udo
    Stark, Klaus
    Krause, Gerard
    NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (19): : 1771 - 1780
  • [49] Serological Evidence of Asymptomatic Infections during Escherichia coli O104:H4 Outbreak in Germany in 2011
    Balabanova, Yanina
    Klar, Stefanie
    Delere, Yvonne
    Wilking, Hendrik
    Faber, Mirko S.
    Lassen, Sofie Gillesberg
    Gilsdorf, Andreas
    Dupke, Susann
    Nitschke, Martin
    Sayk, Friedhelm
    Grunow, Roland
    Krause, Gerard
    PLOS ONE, 2013, 8 (09):
  • [50] Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC) Serotype O104: H4 -The Evolving "Superbug"
    Biju, C. M.
    Befekadu, A. Y.
    Reji, S. D.
    Afework, K.
    Lan, W. C.
    John, J. B.
    BANGLADESH JOURNAL OF MEDICAL SCIENCE, 2012, 11 (01): : 4 - +