Real-Time Semantic Segmentation With Fast Attention

被引:86
|
作者
Hu, Ping [1 ,2 ]
Perazzi, Federico [3 ]
Heilbron, Fabian Caba [4 ]
Wang, Oliver [4 ]
Lin, Zhe [4 ]
Saenko, Kate [1 ,2 ]
Sclaroff, Stan [1 ,2 ]
机构
[1] Boston Univ, Dept Comp Sci, 111 Cummington St, Boston, MA 02215 USA
[2] MIT IBM Watson AI Lab, Cambridge, MA 02142 USA
[3] Facebook, Menlo Pk, CA 94025 USA
[4] Adobe, San Jose, CA 95110 USA
基金
美国国家科学基金会;
关键词
Semantics; Real-time systems; Feature extraction; Computational modeling; Computational efficiency; Videos; Computer architecture; Semantic segmentation; real-time speed; fast attention;
D O I
10.1109/LRA.2020.3039744
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In deep CNN based models for semantic segmentation, high accuracy relies on rich spatial context (large receptive fields) and fine spatial details (high resolution), both of which incur high computational costs. In this letter, we propose a novel architecture that addresses both challenges and achieves state-of-the-art performance for semantic segmentation of high-resolution images and videos in real-time. The proposed architecture relies on our fast spatial attention, which is a simple yet efficient modification of the popular self-attention mechanism and captures the same rich spatial context at a small fraction of the computational cost, by changing the order of operations. Moreover, to efficiently process high-resolution input, we apply an additional spatial reduction to intermediate feature stages of the network with minimal loss in accuracy thanks to the use of the fast attention module to fuse features. We validate our method with a series of experiments, and show that results on multiple datasets demonstrate superior performance with better accuracy and speed compared to existing approaches for real-time semantic segmentation. On Cityscapes, our network achieves 74.4% mIoU at 72 FPS and 75.5% mIoU at 58 FPS on a single Titan X GPU, which is similar to 50% faster than the state-of-the-art while retaining the same accuracy.
引用
下载
收藏
页码:263 / 270
页数:8
相关论文
共 50 条
  • [31] DMANet: Dual-branch multiscale attention network for real-time semantic segmentation
    Dong, Yongsheng
    Mao, Chongchong
    Zheng, Lintao
    Wu, Qingtao
    Neurocomputing, 2025, 617
  • [32] Real-Time Semantic Segmentation of Point Clouds Based on an Attention Mechanism and a Sparse Tensor
    Wang, Fei
    Yang, Yujie
    Wu, Zhao
    Zhou, Jingchun
    Zhang, Weishi
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [33] Real-Time Semantic Segmentation with Label Propagation
    Sheikh, Rasha
    Garbade, Martin
    Gall, Juergen
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 3 - 14
  • [34] Real-time Semantic Segmentation for Road Scene
    Zhang, Xuetao
    Chen, Zhenxue
    Lu, Dan
    Li, Xianming
    2018 3RD IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (IEEE ICARM), 2018, : 19 - 23
  • [35] Efficient ConvNet for Real-time Semantic Segmentation
    Romera, Eduardo
    Alvarez, Jose M.
    Bergasa, Luis M.
    Arroyo, Roberto
    2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 1789 - 1794
  • [36] DAABNet: depth-wise asymmetric attention bottleneck for real-time semantic segmentation
    Tang, Qingsong
    Chen, Yingli
    Zhao, Minghui
    Min, Shitong
    Jiang, Wuming
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2024, 13 (01)
  • [37] LAANet: lightweight attention-guided asymmetric network for real-time semantic segmentation
    Xiuling Zhang
    Bingce Du
    Ziyun Wu
    Tingbo Wan
    Neural Computing and Applications, 2022, 34 : 3573 - 3587
  • [38] Real-Time Driving Scene Semantic Segmentation
    Wang, Wenfu
    Fu, Yongjian
    Pan, Zhijie
    Li, Xi
    Zhuang, Yueting
    IEEE ACCESS, 2020, 8 : 36776 - 36788
  • [39] Background Subtraction With Real-Time Semantic Segmentation
    Zeng, Dongdong
    Chen, Xiang
    Zhu, Ming
    Goesele, Michael
    Kuijper, Arjan
    IEEE ACCESS, 2019, 7 : 153869 - 153884
  • [40] Rethinking BiSeNet For Real-time Semantic Segmentation
    Fan, Mingyuan
    Lai, Shenqi
    Huang, Junshi
    Wei, Xiaoming
    Chai, Zhenhua
    Luo, Junfeng
    Wei, Xiaolin
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9711 - 9720