共 50 条
On a Conjecture Between Randic Index and Average Distance of Unicyclic Graphs
被引:1
|作者:
You, Zhifu
[1
]
Liu, Bolian
[2
]
机构:
[1] Guangdong Polytech Normal Univ, Sch Comp Sci, Guangzhou 510665, Guangdong, Peoples R China
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
Randic index;
Average distance;
Unicyclic graphs;
Conjecture;
TREES;
D O I:
10.2298/FIL1404767Y
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The Randic index R(G) of a graph G is defined as R(G) = Sigma(uv is an element of E)(d(u)d(v)) (1/2), where the summation goes over all edges of G. In 1988, Fajtlowicz proposed a conjecture: For all connected graphs G with average distance ad(G), then R(G) >= ad(G). In this paper, we prove that this conjecture is true for unicyclic graphs.
引用
收藏
页码:767 / 773
页数:7
相关论文