Nonuniform sampling in multidimensional NMR for improving spectral sensitivity

被引:23
|
作者
Zambrello, Matthew A. [1 ]
Schuyler, Adam D. [1 ]
Maciejewski, Mark W. [1 ]
Delaglio, Frank [2 ,3 ]
Bersonova, Irina [1 ]
Hoch, Jeffrey C. [1 ]
机构
[1] UConn Hlth, Dept Mol Biol & Biophys, 263 Farmington Ave, Farmington, CT 06030 USA
[2] NIST, Inst Biosci & Biotechnol Res, 9600 Gudelsky Dr, Rockville, MD 20850 USA
[3] Univ Maryland, 9600 Gudelsky Dr, Rockville, MD 20850 USA
基金
美国国家卫生研究院;
关键词
TO-NOISE RATIO; MAXIMUM-ENTROPY; PROJECTION-RECONSTRUCTION; REDUCED DIMENSIONALITY; SPECTROSCOPY; RESOLUTION; PROTEIN; EXTRAPOLATION; ENHANCEMENT;
D O I
10.1016/j.ymeth.2018.03.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The development of multidimensional NMR spectroscopy enabled an explosion of structural and dynamical investigations on proteins and other biornacromolecules. Practical limitations on data sampling, based on the Jeener paradigm of parametric sampling of indirect time domains, have long placed limits on resolution in the corresponding frequency dimensions. The emergence of nonuniform sampling (NUS) in indirect time dimensions circumvents those limitations, affording high resolution spectra from short data records collected in practically realized measurement times. In addition to substantially improved resolution, NUS can also be exploited to improve sensitivity, with gains comparable to those obtained using cryogenically cooled probes. We describe a general approach for acquiring and processing multidimensional NUS NMR data for improving sensitivity. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 68
页数:7
相关论文
共 50 条
  • [21] Randomization improves sparse sampling in multidimensional NMR
    Hoch, Jeffrey C.
    Maciejewski, Mark W.
    Filipovic, Blagoje
    JOURNAL OF MAGNETIC RESONANCE, 2008, 193 (02) : 317 - 320
  • [22] Triangular sampling of multidimensional NMR data sets
    Centre de Biochimie Structurale, Faculté de Pharmacie, 15 Avenue Ch. Flahault, F-34060 Montpellier, France
    Magn. Reson. Chem., 9 (593-596):
  • [23] Triangular sampling of multidimensional NMR data sets
    Aggarwal, K
    Delsuc, MA
    MAGNETIC RESONANCE IN CHEMISTRY, 1997, 35 (09) : 593 - 596
  • [24] Parallel receivers and sparse sampling in multidimensional NMR
    Kupce, Eriks
    Freeman, Ray
    JOURNAL OF MAGNETIC RESONANCE, 2011, 213 (01) : 1 - 13
  • [25] Data Sampling in Multidimensional NMR: Fundamentals and Strategies
    Maciejewski, Mark W.
    Mobli, Mehdi
    Schuyler, Adam D.
    Stern, Alan S.
    Hoch, Jeffrey C.
    NOVEL SAMPLING APPROACHES IN HIGHER DIMENSIONAL NMR, 2012, 316 : 49 - 77
  • [26] Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR (vol 83, pg 21, 2014)
    Mobli, Mehdi
    Hoch, Jeffrey C.
    PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2015, 86-87 : 80 - 80
  • [27] Rapid NMR Relaxation Measurements Using Optimal Nonuniform Sampling of Multidimensional Accordion Data Analyzed by a Sparse Reconstruction Method
    Carlstrom, Goran
    Elvander, Filip
    Sward, Johan
    Jakobsson, Andreas
    Akke, Mikael
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (27): : 5718 - 5723
  • [28] Fast multidimensional NMR: Radial sampling of evolution space
    Kupce, E
    Freeman, R
    JOURNAL OF MAGNETIC RESONANCE, 2005, 173 (02) : 317 - 321
  • [29] Optimization of random time domain sampling in multidimensional NMR
    Kazimierczuk, Krzysztof
    Zawadzka, Anna
    Kozminski, Wiktor
    JOURNAL OF MAGNETIC RESONANCE, 2008, 192 (01) : 123 - 130
  • [30] Novel Periodogram and Capon Spectral Analysis Based on Nonuniform Sampling
    Font-Segura, Josep
    Vazquez, Gregori
    Riba, Jaume
    2011 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE (GLOBECOM 2011), 2011,