Improving airway segmentation in computed tomography using leak detection with convolutional networks

被引:77
|
作者
Charbonnier, Jean-Paul [1 ]
van Rikxoort, Eva M. [1 ]
Setio, Arnaud A. A. [1 ]
Schaefer-Prokop, Cornelia M. [2 ,3 ]
van Ginneken, Bram [1 ]
Ciompi, Francesco [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Diagnost Image Anal Grp, Geert Grootepl 10, NL-6525 GA Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Nijmegen, Netherlands
[3] Meander Med Ctr, Dept Radiol, Amersfoort, Netherlands
关键词
Airway segmentation; Chest computed tomography; Convolutional networks; CT;
D O I
10.1016/j.media.2016.11.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel method to improve airway segmentation in thoracic computed tomography (CT) by detecting and removing leaks. Leak detection is formulated as a classification problem, in which a convolutional network (ConvNet) is trained in a supervised fashion to perform the classification task. In order to increase the segmented airway tree length, we take advantage of the fact that multiple segmentations can be extracted from a given airway segmentation algorithm by varying the parameters that influence the tree length and the amount of leaks. We propose a strategy in which the combination of these segmentations after removing leaks can increase the airway tree length while limiting the amount of leaks. This strategy therefore largely circumvents the need for parameter fine-tuning of a given airway segmentation algorithm. The ConvNet was trained and evaluated using a subset of inspiratory thoracic CT scans taken from the COPDGene study. Our method was validated on a separate independent set of the EXACT'09 challenge. We show that our method significantly improves the quality of a given leaky airway segmentation, achieving a higher sensitivity at a low false -positive rate compared to all the state-of-the-art methods that entered in EXACT09, and approaching the performance of the combination of all of them. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 50 条
  • [31] Segmentation of tomography datasets using 3D convolutional neural networks
    James, Jim
    Pruyne, Nathan
    Stan, Tiberiu
    Schwarting, Marcus
    Yeom, Jiwon
    Hong, Seungbum
    Voorhees, Peter
    Blaiszik, Ben
    Foster, Ian
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 216
  • [32] Cardio-pulmonary substructure segmentation of radiotherapy computed tomography images using convolutional neural networks for clinical outcomes analysis
    Haq, Rabia
    Hotca, Alexandra
    Apte, Aditya
    Rimner, Andreas
    Deasy, Joseph O.
    Thor, Maria
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2020, 14 : 61 - 66
  • [33] Improving the segmentation of scanning probe microscope images using convolutional neural networks
    Farley, Steff
    Hodgkinson, Jo E. A.
    Gordon, Oliver M.
    Turner, Joanna
    Soltoggio, Andrea
    Moriarty, Philip J.
    Hunsicker, Eugenie
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [34] Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks
    Barros, Renan Sales
    Tolhuisen, Manon L.
    Boers, Anna
    Jansen, Ivo
    Ponomareva, Elena
    Dippel, Diederik W. J.
    van der Lugt, Aad
    van Oostenbrugge, Robert J.
    van Zwam, Wim H.
    Berkhemer, Olvert A.
    Goyal, Mayank
    Demchuk, Andrew M.
    Menon, Bijoy K.
    Mitchell, Peter
    Hill, Michael D.
    Jovin, Tudor G.
    Davalos, Antoni
    Campbell, Bruce C., V
    Saver, Jeffrey L.
    Roos, Yvo B. W. E. M.
    Muir, Keith W.
    White, Phil
    Bracard, Serge
    Guillemin, Francis
    Olabarriaga, Silvia Delgado
    Majoie, Charles B. L. M.
    Marquering, Henk A.
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2020, 12 (09) : 848 - +
  • [35] Automatic Segmentation of Stroke Lesions in Non-Contrast Computed Tomography Datasets With Convolutional Neural Networks
    Tuladhar, Anup
    Schimert, Serena
    Rajashekar, Deepthi
    Kniep, Helge C.
    Fiehler, Jens
    Forkert, Nils D.
    IEEE ACCESS, 2020, 8 : 94871 - 94879
  • [36] Using convolutional neural networks for image semantic segmentation and object detection
    Li, Shuangmei
    Huang, Chengning
    SYSTEMS AND SOFT COMPUTING, 2024, 6
  • [37] Automatic Glottis Detection and Segmentation in Stroboscopic videos using Convolutional Networks
    Degala, Divya
    Rao, Achuth M., V
    Krishnamurthy, Rahul
    Gopikishore, Pebbili
    Priyadharshini, Veeramani
    Prakash, T. K.
    Ghosh, Prasanta Kumar
    INTERSPEECH 2020, 2020, : 4801 - 4805
  • [38] Detection and Segmentation of Rice Diseases Using Deep Convolutional Neural Networks
    Rai C.K.
    Pahuja R.
    SN Computer Science, 4 (5)
  • [39] Improving Quality of Dynamic Airway Computed Tomography Using an Expiratory Airflow Indicator Device
    Hahn, Lewis D.
    Sung, Arthur W.
    Shafiq, Majid
    Guo, Haiwei Henry
    JOURNAL OF THORACIC IMAGING, 2018, 33 (03) : 191 - 196
  • [40] Temporal Convolutional Networks for Action Segmentation and Detection
    Lea, Colin
    Flynn, Michael D.
    Vidal, Rene
    Reiter, Austin
    Hager, Gregory D.
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1003 - 1012