Improving airway segmentation in computed tomography using leak detection with convolutional networks

被引:72
|
作者
Charbonnier, Jean-Paul [1 ]
van Rikxoort, Eva M. [1 ]
Setio, Arnaud A. A. [1 ]
Schaefer-Prokop, Cornelia M. [2 ,3 ]
van Ginneken, Bram [1 ]
Ciompi, Francesco [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Diagnost Image Anal Grp, Geert Grootepl 10, NL-6525 GA Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Nijmegen, Netherlands
[3] Meander Med Ctr, Dept Radiol, Amersfoort, Netherlands
关键词
Airway segmentation; Chest computed tomography; Convolutional networks; CT;
D O I
10.1016/j.media.2016.11.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel method to improve airway segmentation in thoracic computed tomography (CT) by detecting and removing leaks. Leak detection is formulated as a classification problem, in which a convolutional network (ConvNet) is trained in a supervised fashion to perform the classification task. In order to increase the segmented airway tree length, we take advantage of the fact that multiple segmentations can be extracted from a given airway segmentation algorithm by varying the parameters that influence the tree length and the amount of leaks. We propose a strategy in which the combination of these segmentations after removing leaks can increase the airway tree length while limiting the amount of leaks. This strategy therefore largely circumvents the need for parameter fine-tuning of a given airway segmentation algorithm. The ConvNet was trained and evaluated using a subset of inspiratory thoracic CT scans taken from the COPDGene study. Our method was validated on a separate independent set of the EXACT'09 challenge. We show that our method significantly improves the quality of a given leaky airway segmentation, achieving a higher sensitivity at a low false -positive rate compared to all the state-of-the-art methods that entered in EXACT09, and approaching the performance of the combination of all of them. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 50 条
  • [1] Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks
    Garcia-Uceda, Antonio
    Selvan, Raghavendra
    Saghir, Zaigham
    Tiddens, Harm A. W. M.
    de Bruijne, Marleen
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks
    Antonio Garcia-Uceda
    Raghavendra Selvan
    Zaigham Saghir
    Harm A. W. M. Tiddens
    Marleen de Bruijne
    [J]. Scientific Reports, 11
  • [3] Segmentation of liver tumors with abdominal computed tomography using fully convolutional networks
    Chen, Chih-, I
    Lu, Nan-Han
    Huang, Yung-Hui
    Liu, Kuo-Ying
    Hsu, Shih-Yen
    Matsushima, Akari
    Wang, Yi-Ming
    Chen, Tai-Been
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (05) : 953 - 966
  • [4] Use of Convolutional Neural Networks for Detection and Segmentation of Pulmonary Nodules in Computed Tomography Images
    Saraiva, A. A.
    Lopes, Luciano
    Pedro, Pimentel
    Moura Sousa, Jose Vigno
    Fonseca Ferreira, N. M.
    Batista Neto, J. E. S.
    Soares, Salviano
    Valente, Antonio
    [J]. BIODEVICES: PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 1: BIODEVICES, 2020, 2020, : 292 - 297
  • [5] COLITIS DETECTION ON COMPUTED TOMOGRAPHY USING REGIONAL CONVOLUTIONAL NEURAL NETWORKS
    Liu, Jiamin
    Wang, David
    Wei, Zhuoshi
    Lu, Le
    Kim, Lauren
    Turkbey, Evrim
    Summers, Ronald M.
    [J]. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 863 - 866
  • [6] Atherosclerotic Vascular Calcification Detection and Segmentation on Low Dose Computed Tomography Scans Using Convolutional Neural Networks
    Chellamuthu, Karthik
    Liu, Jiamin
    Yao, Jianhua
    Bagheri, Mohammadhadi
    Lu, Le
    Sandfort, Veit
    Summers, Ronald M.
    [J]. 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 388 - 391
  • [7] Semantic Segmentation of Extraocular Muscles on Computed Tomography Images Using Convolutional Neural Networks
    Shanker, Ramkumar Rajabathar Babu Jai
    Zhang, Michael H.
    Ginat, Daniel T.
    [J]. DIAGNOSTICS, 2022, 12 (07)
  • [8] Cervical spine fracture detection in computed tomography using convolutional neural networks
    Golla, Alena-Kathrin
    Lorenz, Cristian
    Buerger, Christian
    Lossau, Tanja
    Klinder, Tobias
    Mutze, Sven
    Arndt, Holger
    Spohn, Frederik
    Mittmann, Marlene
    Goelz, Leonie
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (11):
  • [9] Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks
    Liu, Jiamin
    Wang, David
    Lu, Le
    Wei, Zhuoshi
    Kim, Lauren
    Turkbey, Evrim B.
    Sahiner, Berkman
    Petrick, Nicholas A.
    Summers, Ronald M.
    [J]. MEDICAL PHYSICS, 2017, 44 (09) : 4630 - 4642
  • [10] Auto Segmentation of Organs at Risk in Thorax Computed Tomography Using Deep Convolutional Neural Networks
    Haytmyradov, M.
    Surucu, M.
    Cassetta, F.
    Roeske, J.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E190 - E190