Molecular structure and sour gas surface chemistry of supported K2O/WO3/Al2O3 catalysts

被引:19
|
作者
Zhu, Minghui [1 ]
Li, Bin [1 ]
Jehng, Jih-Mirn [1 ]
Sharma, Lohit [1 ]
Taborda, Julian [1 ]
Zhang, Lihua [2 ]
Stach, Eric [2 ,3 ]
Wachs, Israel E. [1 ]
Wu, Zili [4 ,5 ]
Baltrusaitis, Jonas [1 ]
机构
[1] Lehigh Univ, Dept Chem & Biomol Engn, B336 Iacocca Hall,111 Res Dr, Bethlehem, PA 18015 USA
[2] Brookhaven Natl Lab, Ctr Funct Ncutomat, Upton, NY 11973 USA
[3] Univ Penn, Mat Sci & Engn, Philadelphia, PA 19104 USA
[4] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[5] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
关键词
K2O/WO3/Al2O3; Catalyst; in situ; CO2; SO2; METHYL MERCAPTAN; CARBON-DIOXIDE; ALPHA-AL2O3; 0001; TUNGSTEN; ALUMINA; CONVERSION; ACID; HYDROCARBONS; ADSORPTION; HYDROGENATION;
D O I
10.1016/j.apcatb.2018.03.044
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular structures of the unpromoted and K2O-promoted supported WO3/Al2O3 catalysts were studied with in situ Raman and UV-vis spectroscopy. In situ Raman spectra revealed that supported 20% WO3/AAl(2)O(3) corresponds to near monolayer coverage of isolated and oligomeric surface WOx species on Al2O3. Above monolayer surface WOx coverage (21% WO3/Al2O3), crystalline WO3 nanoparticles are also present. The addition of K2O to the supported WO3/Al2O3 catalyst increased the concentration of isolated surface WOx species and did not form K2WO4 nanoparticles. The reducibility of the tungsten oxide structures depends on their structures (2D or 3D) and the K2O promoter. Their interaction with acidic CO2 and SO2 gases was also investigated. Adsorption of CO2 creates several surface carbonate species of varying acidity that were detected using a combination of in situ IR and mass spectroscopy. Adsorbed bicarbonate form on weakly basic surface sites on tungsten oxide monolayer WO3/Al2O3 catalyst as well as in the presence of low 2.5% K2O loading. At high 5% K2O loading, the presence of the strong surface basic sites yields adsorbed carbonates. After SO2 pretreatment, however, new strongly adsorbed sulfate appears on the surface that inhibits CO2 adsorption.
引用
收藏
页码:146 / 154
页数:9
相关论文
共 50 条
  • [21] Ring opening of decalin and methylcyclohexane over alumina-based monofunctional WO3/Al2O3 and Ir/Al2O3 catalysts
    Moraes, Rodrigo
    Thomas, Karine
    Thomas, Sebastien
    Van Donk, Sander
    Grasso, Giacomo
    Gilson, Jean-Pierre
    Houalla, Marwan
    [J]. JOURNAL OF CATALYSIS, 2012, 286 : 62 - 77
  • [22] Direct Conversion of Ethylene to Propylene over NiO/WO3/Al2O3 Catalysts
    Karpova, T. R.
    Buluchevskiy, E. A.
    Moiseenko, M. A.
    Lavrenov, A., V
    Arbuzov, A. B.
    [J]. 21ST CENTURY: CHEMISTRY TO LIFE, 2019, 2143
  • [23] Conversion of levulinic acid using CuO/WO3(x)-Al2O3 catalysts
    Mafokoane, M.
    Seguel, J.
    Garcia, R.
    Diaz de Leon, J. N.
    Sepulveda, C.
    Escalona, N.
    [J]. CATALYSIS TODAY, 2021, 367 (367) : 310 - 319
  • [24] Structure and Vibrational Properties of Potassium-Promoted Tungsten Oxide Catalyst Monomeric Sites Supported on Alumina (K2O/WO3/Al2O3) Characterized Using Periodic Density Functional Theory
    Kiani, Daniyal
    Belletti, Gustavo
    Quaino, Paola
    Tielens, Frederik
    Baltrusaitis, Jonas
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (42): : 24190 - 24201
  • [25] Effect of Al2O3 addition and WO3 modification on catalytic activity of NiO/Al2O3-TiO 2/WO3 for ethylene dimerization
    Department of Applied Chemistry, Engineering College, Kyungpook National University, Daegu 702-701, Korea, Republic of
    不详
    [J]. Bull. Korean Chem. Soc, 2007, 10 (1763-1770):
  • [26] Effect of Al2O3 addition and WO3 modification on catalytic activity of NiO/Al2O3-TiO2/WO3 for ethylene dimerization
    Pae, Young Il
    Sohn, Jong Rack
    [J]. BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2007, 28 (10) : 1763 - 1770
  • [27] Acidic property and gas-phase glycerol-dehydration activity of WO3/Al2O3 catalysts
    Kanai, Ryuichi
    Yagi, Fuyuki
    Omata, Kaori
    Miura, Hiroki
    Shishido, Tetsuya
    [J]. MOLECULAR CATALYSIS, 2023, 550
  • [28] Epoxidation of Propylene by Molecular Oxygen Over the Ag–Y2O3–K2O/α-Al2O3 Catalyst
    Wei Yao
    Yang Long Guo
    Xiao Hui Liu
    Yun Guo
    Yan Qin Wang
    Yun Song Wang
    Zhi Gang Zhang
    Guan Zhong Lu
    [J]. Catalysis Letters, 2007, 119 : 185 - 190
  • [29] Influence of the surface structure on the growth of a metallic deposit on oxide:: Au/Al2O3 and Au/WO3
    Gillet, M
    Lemire, C
    Gillet, E
    [J]. CERAMIC INTERFACES: PROPERTIES AND APPLICATIONS V, 2003, 253 : 103 - 118
  • [30] Reducibility and toluene hydrogenation activity of nickel catalysts supported on γ-Al2O3 and κ-Al2O3
    Choi, Jinsoon
    Zhang, Shihua
    Hill, Josephine M.
    [J]. CATALYSIS SCIENCE & TECHNOLOGY, 2012, 2 (01) : 179 - 186