Finiteness of de Rham cohomology in rigid analysis

被引:20
|
作者
Grosse-Klönne, E [1 ]
机构
[1] Univ Munster, Math Inst, D-48149 Munster, Germany
关键词
D O I
10.1215/S0012-7094-02-11312-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a large class of smooth dagger spaces-rigid spaces with overconvergent structure sheaf-we prove finite dimensionality of de Rham cohomology. This is enough to obtain finiteness of P Berthelot's rigid cohomology also in the nonsmooth case. We need a careful study of de Rham cohomology, in situations of semistable reduction.
引用
收藏
页码:57 / 91
页数:35
相关论文
共 50 条
  • [31] De Rham cohomology for Log Schemi
    Fornasiero, M
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2005, 8A (03): : 537 - 540
  • [32] DE RHAM COHOMOLOGY AND CONDUCTORS OF CURVES
    BLOCH, S
    [J]. DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) : 295 - 308
  • [33] DE RHAM COHOMOLOGY OF FLAG VARIETIES
    MARLIN, R
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1977, 105 (01): : 89 - 96
  • [34] The de Rham cohomology of the Suzuki curves
    Malmskog, Beth
    Pries, Rachel
    Weir, Colin
    [J]. ARITHMETIC GEOMETRY: COMPUTATION AND APPLICATIONS, 2019, 722 : 105 - 119
  • [35] De Rham Cohomology and Integration in Manifolds
    Sossinsky, A. B.
    [J]. MATHEMATICAL NOTES, 2020, 107 (5-6) : 1034 - 1037
  • [36] COHOMOLOGY WITH COEFFICIENTS IN Z(P) AND DE RHAM COHOMOLOGY - EXAMPLES
    HAMM, HA
    [J]. ASTERISQUE, 1989, (179-80) : 113 - 144
  • [37] DE RHAM COHOMOLOGY OF LOCAL COHOMOLOGY MODULES: THE GRADED CASE
    Puthenpurakal, Tony J.
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2015, 217 : 1 - 21
  • [38] DE RHAM COHOMOLOGY AND P-ADIC ETALE COHOMOLOGY
    ILLUSIE, L
    [J]. ASTERISQUE, 1990, (189-90) : 325 - 374
  • [39] Punctured local holomorphic de Rham cohomology
    Huang, XJ
    Luk, HS
    Yau, SST
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (03) : 633 - 640
  • [40] OVERCONVERGENT DE RHAM-WITT COHOMOLOGY
    Davis, Christopher
    Langer, Andreas
    Zink, Thomas
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2011, 44 (02): : 197 - 262