Equivariant K-theory and higher Chow groups of schemes

被引:4
|
作者
Krishna, Amalendu [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, 1 Homi Bhabha Rd, Mumbai, Maharashtra, India
关键词
RIEMANN-ROCH; INTERSECTION THEORY; MOTIVIC COHOMOLOGY; VARIETIES; FORMULA;
D O I
10.1112/plms.12018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a smooth quasi-projective scheme X over a field k with an action of a reductive group, we establish a spectral sequence connecting the equivariant and the ordinary higher Chow groups of X. For X smooth and projective, we show that this spectral sequence degenerates, leading to an explicit relation between the equivariant and the ordinary higher Chow groups. We obtain several applications to algebraic K-theory. We show that for a reductive group G acting on a smooth projective scheme X, the forgetful map K-i(G)(X) -> K-i (X) induces an isomophism K-i(G)(X)/IGKiG(X) ->(similar or equal to) K-i(X) with rational coefficients. This generalizes a result of Graham to higher K-theory of such schemes. We prove an equivariant Riemann-Roch theorem, leading to a generalization of a result of Edidin and Graham to higher K-theory. Similar techniques are used to prove the equivariant Quillen-Lichtenbaum conjecture.
引用
收藏
页码:657 / 683
页数:27
相关论文
共 50 条
  • [31] LOWER EQUIVARIANT K-THEORY
    SVENSSON, JA
    MATHEMATICA SCANDINAVICA, 1987, 60 (02) : 179 - 201
  • [32] EQUIVARIANT K-THEORY OF GRASSMANNIANS
    Pechenik, Oliver
    Yong, Alexander
    FORUM OF MATHEMATICS PI, 2017, 5
  • [33] THE SPECTRUM OF EQUIVARIANT K-THEORY
    BOJANOWSKA, A
    MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (01) : 1 - 19
  • [34] EQUIVARIANT K-THEORY FOR CURVES
    ELLINGSRUD, G
    LONSTED, K
    DUKE MATHEMATICAL JOURNAL, 1984, 51 (01) : 37 - 46
  • [35] EQUIVARIANT CONNECTIVE K-THEORY
    Karpenko, Nikita A.
    Merkurjev, Alexander S.
    JOURNAL OF ALGEBRAIC GEOMETRY, 2022, 31 (01) : 181 - 204
  • [36] EQUIVARIANT K-THEORY OF RINGS
    DAVYDOV, AA
    RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (04) : 167 - 168
  • [37] EQUIVARIANT COMMUNICATION K-THEORY
    DAVYDOV, AA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1991, (06): : 90 - 93
  • [38] K-theory of equivariant quantization
    Tang, Xiang
    Yao, Yi-Jun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (02) : 478 - 486
  • [39] EQUIVARIANT ALGEBRAIC K-THEORY
    FIEDOROWICZ, Z
    HAUSCHILD, H
    MAY, JP
    LECTURE NOTES IN MATHEMATICS, 1982, 967 : 23 - 80
  • [40] Additive higher Chow groups of schemes
    Krishna, Amalendu
    Levine, Marc
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 619 : 75 - 140