Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization

被引:0
|
作者
Ahuja, Kartik [1 ]
Caballero, Ethan [1 ]
Zhang, Dinghuai [1 ]
Gagnon-Audet, Jean-Christophe [1 ]
Bengio, Yoshua [1 ]
Mitliagkas, Ioannis [1 ]
Rish, Irina [1 ]
机构
[1] Univ Montreal, Quebec AI Inst, Mila, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The invariance principle from causality is at the heart of notable approaches such as invariant risk minimization (IRM) that seek to address out-of-distribution (OOD) generalization failures. Despite the promising theory, invariance principle-based approaches fail in common classification tasks, where invariant (causal) features capture all the information about the label. Are these failures due to the methods failing to capture the invariance? Or is the invariance principle itself insufficient? To answer these questions, we revisit the fundamental assumptions in linear regression tasks, where invariance-based approaches were shown to provably generalize OOD. In contrast to the linear regression tasks, we show that for linear classification tasks we need much stronger restrictions on the distribution shifts, or otherwise OOD generalization is impossible. Furthermore, even with appropriate restrictions on distribution shifts in place, we show that the invariance principle alone is insufficient. We prove that a form of the information bottleneck constraint along with invariance helps address key failures when invariant features capture all the information about the label and also retains the existing success when they do not. We propose an approach that incorporates both of these principles and demonstrate its effectiveness in several experiments.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Out-of-Distribution Generalization via Risk Extrapolation
    Krueger, David
    Caballero, Ethan
    Jacobsen, Joern-Henrik
    Zhang, Amy
    Binas, Jonathan
    Zhang, Dinghuai
    Le Priol, Remi
    Courville, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [22] Towards a Theoretical Framework of Out-of-Distribution Generalization
    Ye, Haotian
    Xie, Chuanlong
    Cai, Tianle
    Li, Ruichen
    Li, Zhenguo
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [23] Learning Substructure Invariance for Out-of-Distribution Molecular Representations
    Yang, Nianzu
    Zeng, Kaipeng
    Wu, Qitian
    Jia, Xiaosong
    Yan, Junchi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [24] Information Bottleneck-Based Feature Weighting for Enhanced Medical Image Out-of-Distribution Detection
    Schott, Brayden
    Klanecek, Zan
    Deatsch, Alison
    Santoro-Fernandes, Victor
    Francken, Thomas
    Perlman, Scott
    Jeraj, Robert
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2024, 2025, 15167 : 128 - 137
  • [25] Toward Out-of-Distribution Generalization Through Inductive Biases
    Moruzzi, Caterina
    PHILOSOPHY AND THEORY OF ARTIFICIAL INTELLIGENCE 2021, 2022, 63 : 57 - 66
  • [26] DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization
    Sun, Xin
    Wang, Liang
    Liu, Qiang
    Wu, Shu
    Wang, Zilei
    Wang, Liang
    PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024, 2024, : 2794 - 2805
  • [27] Verifying the Generalization of Deep Learning to Out-of-Distribution Domains
    Amir, Guy
    Maayan, Osher
    Zelazny, Tom
    Katz, Guy
    Schapira, Michael
    JOURNAL OF AUTOMATED REASONING, 2024, 68 (03)
  • [28] Discovering causally invariant features for out-of-distribution generalization
    Wang, Yujie
    Yu, Kui
    Xiang, Guodu
    Cao, Fuyuan
    Liang, Jiye
    PATTERN RECOGNITION, 2024, 150
  • [29] Graph Out-of-Distribution Generalization With Controllable Data Augmentation
    Lu, Bin
    Zhao, Ze
    Gan, Xiaoying
    Liang, Shiyu
    Fu, Luoyi
    Wang, Xinbing
    Zhou, Chenghu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6317 - 6329
  • [30] Probing out-of-distribution generalization in machine learning for materials
    Li, Kangming
    Rubungo, Andre Niyongabo
    Lei, Xiangyun
    Persaud, Daniel
    Choudhary, Kamal
    Decost, Brian
    Dieng, Adji Bousso
    Hattrick-Simpers, Jason
    COMMUNICATIONS MATERIALS, 2025, 6 (01)