THE STRUCTURE OF UNIRULED MANIFOLDS WITH SPLIT TANGENT BUNDLE

被引:0
|
作者
Hoering, Andreas [1 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, Equipe Topol & Geometrie Algebrique, F-75013 Paris, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that a uniruled manifold with a split tangent bundle admits almost holomorphic fibrations that are related to the splitting. We analyse these fibrations in detail in several special cases. This yields new results about the integrability of the direct factors and the universal covering of the manifold.
引用
收藏
页码:1067 / 1084
页数:18
相关论文
共 50 条
  • [41] Homogeneous Principal Bundles over Manifolds with Trivial Logarithmic Tangent Bundle
    Azad, Hassan
    Biswas, Indranil
    Khadam, M. Azeem
    JOURNAL OF LIE THEORY, 2019, 29 (04) : 941 - 956
  • [42] Rational curves, Dynkin diagrams and Fano manifolds with nef tangent bundle
    Roberto Muñoz
    Gianluca Occhetta
    Luis E. Solá Conde
    Kiwamu Watanabe
    Mathematische Annalen, 2015, 361 : 583 - 609
  • [43] Tangent Bundle Convolutional Learning: From Manifolds to Cellular Sheaves and Back
    Battiloro, Claudio
    Wang, Zhiyang
    Riess, Hans
    Di Lorenzo, Paolo
    Ribeiro, Alejandro
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1892 - 1909
  • [44] Some Properties of Symplectic Manifolds S on the Projective Tangent Bundle PTM
    He Yong
    Lu Xiaoying
    Lu Weina
    SPORTS MATERIALS, MODELLING AND SIMULATION, 2011, 187 : 483 - 486
  • [45] Rational curves, Dynkin diagrams and Fano manifolds with nef tangent bundle
    Munoz, Roberto
    Occhetta, Gianluca
    Sola Conde, Luis E.
    Watanabe, Kiwamu
    MATHEMATISCHE ANNALEN, 2015, 361 (3-4) : 583 - 609
  • [46] On manifolds with trivial logarithmic tangent bundle: The non-kahler case
    Winkelmann, Joerg
    TRANSFORMATION GROUPS, 2008, 13 (01) : 195 - 209
  • [47] PROJECTIVE MANIFOLDS WHOSE TANGENT BUNDLE CONTAINS A STRICTLY NEF SUBSHEAF
    Liu, Jie
    Ou, Wenhao
    Yang, Xiaokui
    JOURNAL OF ALGEBRAIC GEOMETRY, 2022, : 1 - 53
  • [48] General Natural Metallic Structure on Tangent Bundle
    Azami, Shahroud
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A1): : 81 - 88
  • [49] General Natural Metallic Structure on Tangent Bundle
    Shahroud Azami
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 81 - 88
  • [50] On an Einstein structure on the tangent bundle of a space form
    Papaghiuc, N
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1999, 55 (3-4): : 349 - 361