Dispersive Contour-Path FDTD Algorithm for the Drude-Lorentz Model

被引:7
|
作者
Shibayama, Jun [1 ]
Suzuki, Kazuto [1 ]
Iwamoto, Tetsuya [1 ]
Yamauchi, Junji [1 ]
Nakano, Hisamatsu [1 ]
机构
[1] Hosei Univ, Fac Sci & Engn, Tokyo 1848584, Japan
来源
关键词
Dispersive media; Drude-Lorentz (DL) model; surface plasmon polariton (SPP); trapezoidal recursive convolution (TRC); Z transform (ZT); SCATTERING; LIGHT;
D O I
10.1109/LAWP.2020.3014344
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A dispersive contour-path algorithm is newly introduced into the finite-difference time-domain method for the analysis of arbitrarily shaped dispersive media expressed by the Drude-Lorentz (DL) model. The frequency-dependent formulation is performed using the simple trapezoidal recursive convolution technique. A faster convergence of the numerical results for an Au cylinder is found to be achieved over a wide wavelength range. In addition, the present method can suppress the spurious localization of surface plasmons caused by the conventional staircase approximation. The transmission characteristics of a grating consisting of a metal cylinder array are also revealed and discussed.
引用
收藏
页码:1699 / 1703
页数:5
相关论文
共 50 条
  • [41] Analysis of Propagation Characteristics along an Array of Silver Nanorods Using Dielectric Constants from Experimental Data and the Drude-Lorentz Model
    Zong, Chujing
    Zhang, Dan
    ELECTRONICS, 2019, 8 (11)
  • [42] Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude-Lorentz model
    D'Elia, Stefano
    Scaramuzza, Nicola
    Ciuchi, Federica
    Versace, Carlo
    Strangi, Giuseppe
    Bartolino, Roberto
    APPLIED SURFACE SCIENCE, 2009, 255 (16) : 7203 - 7211
  • [43] On the anomalous optical conductivity dispersion of electrically conducting polymers: ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model
    Chen, Shangzhi
    Kuhne, Philipp
    Stanishev, Vallery
    Knight, Sean
    Brooke, Robert
    Petsagkourakis, Ioannis
    Crispin, Xavier
    Schubert, Mathias
    Darakchieva, Vanya
    Jonsson, Magnus P.
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (15) : 4350 - 4362
  • [44] A novel contour-path finite-difference time-domain (CPFDTD) algorithm for modeling objects with curved surfaces
    Min, Y
    Kil, B
    Lee, S
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 28 (04) : 285 - 287
  • [45] Numerical simulation of metallic nanostructures interacting with electromagnetic fields using the Lorentz-Drude model and FDTD method
    Benavides-Cruz, M.
    Calderon-Ramon, C.
    Gomez-Aguilar, J. F.
    Rodriguez-Achach, M.
    Cruz-Orduna, I.
    Laguna-Camacho, J. R.
    Morales-Mendoza, L. J.
    Enciso-Aguilar, M.
    Perez-Meana, H.
    Escalante-Martinez, J. E.
    Lopez-Calderon, J. E.
    Juarez-Morales, G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (04):
  • [46] Simple Frequency-Dependent FDTD Algorithm for a Drude-Critical Points Model
    Shibayama, Jun
    Watanabe, Keisuke
    Aado, Ryoji
    Yamauchi, Junji
    Nakano, Hisamatsu
    2010 ASIA-PACIFIC MICROWAVE CONFERENCE, 2010, : 73 - 75
  • [47] Comprehensive Study on Numerical Aspects of Modified Lorentz Model-Based Dispersive FDTD Formulations
    Choi, Hongjin
    Baek, Jae-Woo
    Jung, Kyung-Young
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (12) : 7643 - 7648
  • [48] Complex envelope ADI-PML algorithm for truncating Lorentz dispersive 2-D-FDTD domains
    Ramadan, Omar
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2007, 17 (01) : 4 - 6
  • [49] Unconditionally stable Crank-Nicolson nearly PML algorithm for truncating linear Lorentz dispersive FDTD domains
    Ramadan, Omar
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (06) : 2807 - 2812
  • [50] Goos-Hanchen Shift in the presence of dispersive dielectric-magnetic medium using Lorentz-Drude Model
    Nisar, Momina
    Saghir, M. Abdullah
    Shahzad, Anjum
    Waseer, Waleed Iqbal
    Naqvi, Q. A.
    OPTIK, 2022, 262