Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method

被引:52
|
作者
Di Ilio, G. [1 ]
Chiappini, D. [1 ]
Ubertini, S. [2 ]
Bella, G. [3 ]
Succi, S. [4 ]
机构
[1] Univ Rome Niccolo Cusano, Via Don Carlo Gnocchi 3, I-00166 Rome, Italy
[2] Univ Tuscia, Largo Univ Snc, I-01100 Viterbo, Italy
[3] Univ Roma Tor Vergata, Via Politecn 1, I-00133 Rome, Italy
[4] CNR, Ist Applicazioni Calcolo, Via Taurini 19, I-00185 Rome, Italy
基金
欧洲研究理事会;
关键词
Hybrid lattice Boltzmann method; NACA airfoil; Stall; NUMERICAL-SIMULATION; GRID REFINEMENT; EQUATION; MESHES; FORMULATION; SCHEMES;
D O I
10.1016/j.compfluid.2018.02.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We simulate the two-dimensional fluid flow around National Advisory Committee for Aeronautics (NACA) 0012 airfoil using a hybrid lattice Boltzmann method (HLBM), which combines the standard lattice Boltzmann method with an unstructured finite-volume formulation. The aim of the study is to assess the numerical performances and the robustness of the computational method. To this purpose, after providing a convergence study to estimate the overall accuracy of the method, we analyze the numerical solution for different values of the angle of attack at a Reynolds number equal to 10(3). Subsequently, flow fields at Reynolds numbers up to 10(4) are computed for a zero angle of attack configuration. A grid refinement scheme is applied to the uniformly spaced component of the overlapping grid system to further enhance the numerical efficiency of the model. The results demonstrate the capability of the HLBM to achieve high accuracy near solid curved walls, thus providing a viable alternative in the realm of off-lattice Boltzmann methods based on body-fitted mesh. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:200 / 208
页数:9
相关论文
共 50 条
  • [21] Investigation on effect of square dimples on NACA0012 airfoil with various Reynolds numbers
    Joseph, D. Raja
    Devi, P. Booma
    Gopalsamy, M.
    [J]. INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2021, 42 (04) : 397 - 402
  • [22] Mode and regime identification for a static NACA0012 airfoil at transitional Reynolds numbers
    Poels, Allison
    Collin, Xavier
    Benaissa, Azemi
    Poirel, Dominique
    [J]. MECHANICS & INDUSTRY, 2020, 21 (06)
  • [23] Acoustic Control of Flow over NACA 2415 Airfoil at Low Reynolds Numbers
    Genç, M. Serdar
    Açlkel, H. Hakan
    Akpolat, M. Tuǧrul
    Özkan, Gökhan
    Karasu, Ilyas
    [J]. Journal of Aerospace Engineering, 2016, 29 (06):
  • [24] Direct numerical simulation of flow separation around a NACA 0012 airfoil
    Shan, H
    Jiang, L
    Liu, CQ
    [J]. COMPUTERS & FLUIDS, 2005, 34 (09) : 1096 - 1114
  • [25] Lattice-Boltzmann Simulations of an Oscillating NACA0012 Airfoil in Dynamic Stall
    Ribeiro, Andre F. P.
    Casalino, Damiano
    Fares, Ehab
    [J]. ADVANCES IN FLUID-STRUCTURE INTERACTION, 2016, 133 : 179 - 192
  • [26] Acoustic Control of Flow over NACA 2415 Airfoil at Low Reynolds Numbers
    Genc, M. Serdar
    Acikel, H. Hakan
    Akpolat, M. Tugrul
    Ozkan, Gokhan
    Karasu, Ilyas
    [J]. JOURNAL OF AEROSPACE ENGINEERING, 2016, 29 (06)
  • [27] Influence of heat transfer on the aerodynamic performance of a plunging and pitching NACA0012 airfoil at low Reynolds numbers
    Hinz, Denis F.
    Alighanbari, Hekmat
    Breitsamter, Christian
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2013, 37 : 88 - 99
  • [28] Low-Reynolds-Number Effect on Aerodynamic Characteristics of a NACA 0012 Airfoil
    Kim, Dong-Ha
    Chang, Jo-Won
    Chung, Joon
    [J]. JOURNAL OF AIRCRAFT, 2011, 48 (04): : 1212 - 1215
  • [29] Simulation of Flow Around a Cube at Moderate Reynolds Numbers Using the Lattice Boltzmann Method
    Khan, Majid Hassan
    Sharma, Atul
    Agrawal, Amit
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (01):
  • [30] Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers
    Poirel, D.
    Harris, Y.
    Benaissa, A.
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2008, 24 (05) : 700 - 719