Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method

被引:52
|
作者
Di Ilio, G. [1 ]
Chiappini, D. [1 ]
Ubertini, S. [2 ]
Bella, G. [3 ]
Succi, S. [4 ]
机构
[1] Univ Rome Niccolo Cusano, Via Don Carlo Gnocchi 3, I-00166 Rome, Italy
[2] Univ Tuscia, Largo Univ Snc, I-01100 Viterbo, Italy
[3] Univ Roma Tor Vergata, Via Politecn 1, I-00133 Rome, Italy
[4] CNR, Ist Applicazioni Calcolo, Via Taurini 19, I-00185 Rome, Italy
基金
欧洲研究理事会;
关键词
Hybrid lattice Boltzmann method; NACA airfoil; Stall; NUMERICAL-SIMULATION; GRID REFINEMENT; EQUATION; MESHES; FORMULATION; SCHEMES;
D O I
10.1016/j.compfluid.2018.02.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We simulate the two-dimensional fluid flow around National Advisory Committee for Aeronautics (NACA) 0012 airfoil using a hybrid lattice Boltzmann method (HLBM), which combines the standard lattice Boltzmann method with an unstructured finite-volume formulation. The aim of the study is to assess the numerical performances and the robustness of the computational method. To this purpose, after providing a convergence study to estimate the overall accuracy of the method, we analyze the numerical solution for different values of the angle of attack at a Reynolds number equal to 10(3). Subsequently, flow fields at Reynolds numbers up to 10(4) are computed for a zero angle of attack configuration. A grid refinement scheme is applied to the uniformly spaced component of the overlapping grid system to further enhance the numerical efficiency of the model. The results demonstrate the capability of the HLBM to achieve high accuracy near solid curved walls, thus providing a viable alternative in the realm of off-lattice Boltzmann methods based on body-fitted mesh. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:200 / 208
页数:9
相关论文
共 50 条
  • [1] Characteristics of the flow over a NACA 0012 airfoil at low Reynolds numbers
    Derksen, R. W.
    Agelinchaab, M.
    Tachie, M.
    [J]. ADVANCES IN FLUID MECHANICS VII, 2008, 59 : 143 - 152
  • [2] Stall flutter of NACA 0012 airfoil at low Reynolds numbers
    Bhat, Shantanu S.
    Govardhan, Raghuraman N.
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2013, 41 : 166 - 174
  • [3] Strong transient effects of the flow around a harmonically plunging NACA0012 airfoil at low Reynolds numbers
    S. Banu Yucel
    Mehmet Sahin
    M. Fevzi Unal
    [J]. Theoretical and Computational Fluid Dynamics, 2015, 29 : 391 - 412
  • [4] Strong transient effects of the flow around a harmonically plunging NACA0012 airfoil at low Reynolds numbers
    Yucel, S. Banu
    Sahin, Mehmet
    Unal, M. Fevzi
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2015, 29 (5-6) : 391 - 412
  • [5] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    P. Akbarzadeh
    A. Askari Lehdarboni
    S. M. Derazgisoo
    [J]. Meccanica, 2018, 53 : 3457 - 3476
  • [6] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    Akbarzadeh, P.
    Lehdarboni, A. Askari
    Derazgisoo, S. M.
    [J]. MECCANICA, 2018, 53 (14) : 3457 - 3476
  • [7] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, P.Box: 3619995161, Shahrood
    Semnan, Iran
    [J]. Meccanica, 14 (3457-3476):
  • [8] Shedding vortex characteristics analysis of NACA 0012 airfoil at low Reynolds numbers
    Chang, Jianlong
    Zhang, Qingui
    He, Liujing
    Zhou, Yi
    [J]. ENERGY REPORTS, 2022, 8 : 156 - 174
  • [9] Effects of superhydrophobic surfaces on the flow around an NACA0012 hydrofoil at low Reynolds numbers
    Jungjin Lee
    Hyunseok Kim
    Hyungmin Park
    [J]. Experiments in Fluids, 2018, 59
  • [10] An experimental investigation on the flow control of the partially stepped NACA0012 airfoil at low Reynolds numbers
    Seyhan, Mehmet
    Akbiyik, Hurrem
    [J]. OCEAN ENGINEERING, 2024, 306