W2,p and W1,p-Estimates at the Boundary for Solutions of Fully Nonlinear, Uniformly Elliptic Equations

被引:0
|
作者
Winter, Niki [1 ]
机构
[1] Univ Aachen, Rhein Westfal TH Aachen, Inst Math, D-52056 Aachen, Germany
来源
关键词
Viscosity solutions; uniformly elliptic equations; W-2; W-p-regularity; W-1; PARTIAL-DIFFERENTIAL EQUATIONS; VISCOSITY SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we extend Caffarelli's result on interior W-2,W-p-estimates for viscosity solutions of uniformly elliptic equations and prove W-2,W-p-estimates at a flat boundary. Moreover we extend a result of A. Swiech and prove W-1,W-p-estimates at the boundary. Thereafter we combine these results and prove global W-2,W-p-estimates for equations with dependence on Du and u. Finally, we show that the previous estimates lead to an existence result for W-2,W-p-strong solutions.
引用
收藏
页码:129 / 164
页数:36
相关论文
共 50 条
  • [31] W1,P estimates for nonlinear Schrodinger equations with partially BMO coefficients in Reifenberg domains
    Tang, Lin
    Zhang, Guoming
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (03)
  • [32] W1,p ESTIMATES FOR ELLIPTIC PROBLEMS WITH DRIFT TERMS IN LIPSCHITZ DOMAINS
    Shi, Bojing
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (02) : 537 - 553
  • [33] Uniform W1,p estimates for an elliptic operator with Robin boundary condition in a C1 domain
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    Ghosh, T.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [34] W1,p estimates for solutions to the Ginzburg-Landau equation with boundary data in H1/2
    Bethuel, F
    Bourgain, J
    Brezis, H
    Orlandi, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (12): : 1069 - 1076
  • [35] W1, p(·)-Regularity for Elliptic Equations with Measurable Coefficients in Nonsmooth Domains
    Sun-Sig Byun
    Jihoon Ok
    Lihe Wang
    [J]. Communications in Mathematical Physics, 2014, 329 : 937 - 958
  • [36] W2,d estimates for solution sets of fully nonlinear elliptic inequalities on C1,αdomains
    Li, Dongsheng
    Li, Xuemei
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (04)
  • [37] Weighted W1, p(•)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
    Zhang, Junqiang
    Yang, Dachun
    Yang, Sibei
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 535 - 579
  • [38] W1,p(.)-Regularity for Elliptic Equations with Measurable Coefficients in Nonsmooth Domains
    Byun, Sun-Sig
    Ok, Jihoon
    Wang, Lihe
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 329 (03) : 937 - 958
  • [39] W1,p Regularity of Weak Solutions to Maxwell's Equations
    Chen, Zhihong
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020
  • [40] W2,p(.) -regularity for elliptic equations in nondivergence form with BMO coefficients
    Byun, Sun-Sig
    Lee, Mikyoung
    Ok, Jihoon
    [J]. MATHEMATISCHE ANNALEN, 2015, 363 (3-4) : 1023 - 1052