Detection of Line Artifacts in Lung Ultrasound Images of COVID-19 Patients Via Nonconvex Regularization

被引:26
|
作者
Karakus, Oktay [1 ]
Anantrasirichai, Nantheera [1 ]
Aguersif, Amazigh [2 ]
Silva, Stein [2 ]
Basarab, Adrian [3 ]
Achim, Alin [1 ]
机构
[1] Univ Bristol, Visual Informat Lab, Bristol BS1 5DD, Avon, England
[2] CHU Purpan, Serv Reanimat, F-31300 Toulouse, France
[3] Univ Toulouse, CNRS, UMR 5505, Inst Rech Informat Toulouse IRIT, F-31062 Toulouse, France
基金
英国工程与自然科学研究理事会;
关键词
Lung; Ultrasonic imaging; Diseases; Radon; Acoustics; Transforms; Frequency control; Cauchy-based penalty; COVID-19; line artifacts; lung ultrasound (LUS); Radon transform; B-LINES; COMETS;
D O I
10.1109/TUFFC.2020.3016092
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this article, we present a novel method for line artifacts quantification in lung ultrasound (LUS) images of COVID-19 patients. We formulate this as a nonconvex regularization problem involving a sparsity-enforcing, Cauchy-based penalty function, and the inverse Radon transform. We employ a simple local maxima detection technique in the Radon transform domain, associated with known clinical definitions of line artifacts. Despite being nonconvex, the proposed technique is guaranteed to convergence through our proposed Cauchy proximal splitting (CPS) method, and accurately identifies both horizontal and vertical line artifacts in LUS images. To reduce the number of false and missed detection, our method includes a two-stage validation mechanism, which is performed in both Radon and image domains. We evaluate the performance of the proposed method in comparison to the current state-of-the-art B-line identification method, and show a considerable performance gain with 87% correctly detected B-lines in LUS images of nine COVID-19 patients.
引用
收藏
页码:2218 / 2229
页数:12
相关论文
共 50 条
  • [41] Automatically Scoring Lung Ultrasound Videos of COVID-19 and post-COVID-19 Patients
    Mento, Federico
    Di Sabatino, Antonio
    Fiengo, Anna
    Sabatini, Umberto
    Macioce, Veronica Narvena
    Tursi, Francesco
    Sofia, Carmelo
    Di Cienzo, Chiara
    Smargiassi, Andrea
    Inchingolo, Riccardo
    Perrone, Tiziano
    Demi, Libertario
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [42] Similarity of Lung Ultrasound Image in Patients with COVID-19 and COVID-19-like Illnesses
    Buda, Natalia
    Cylwik, Jolanta
    Kwiecinska, Renata
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (05) : 628 - 629
  • [43] Quantitative Analysis of Pleural Line and B-Lines in Lung Ultrasound Images for Severity Assessment of COVID-19 Pneumonia
    Wang, Yuanyuan
    Zhang, Yao
    He, Qiong
    Liao, Hongen
    Luo, Jianwen
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2022, 69 (01) : 73 - 83
  • [44] Lungensonographie bei COVID‑19Lung ultrasound in COVID-19
    Armin Seibel
    Wolfgang Heinz
    Clemens‑Alexander Greim
    Stefan Weber
    Wiener klinisches Magazin, 2021, 24 (4) : 164 - 172
  • [45] Lungensonographie bei COVID‑19Lung ultrasound in COVID-19
    A. Seibel
    W. Heinz
    C.-A. Greim
    S. Weber
    Der Anaesthesist, 2021, 70 (2) : 146 - 154
  • [46] Lung ultrasound predicts clinical course and outcomes in COVID-19 patients
    Lichter, Yael
    Topilsky, Yan
    Taieb, Philippe
    Banai, Ariel
    Hochstadt, Aviram
    Merdler, Ilan
    Oz, Amir Gal
    Vine, Jacob
    Goren, Or
    Cohen, Barak
    Sapir, Orly
    Granot, Yoav
    Mann, Tomer
    Friedman, Shirley
    Angel, Yoel
    Adi, Nimrod
    Laufer-Perl, Michal
    Ingbir, Merav
    Arbel, Yaron
    Matot, Idit
    Szekely, Yishay
    INTENSIVE CARE MEDICINE, 2020, 46 (10) : 1873 - 1883
  • [47] Lung ultrasound predicts clinical course and outcomes in COVID-19 patients
    Yael Lichter
    Yan Topilsky
    Philippe Taieb
    Ariel Banai
    Aviram Hochstadt
    Ilan Merdler
    Amir Gal Oz
    Jacob Vine
    Or Goren
    Barak Cohen
    Orly Sapir
    Yoav Granot
    Tomer Mann
    Shirley Friedman
    Yoel Angel
    Nimrod Adi
    Michal Laufer-Perl
    Merav Ingbir
    Yaron Arbel
    Idit Matot
    Yishay Szekely
    Intensive Care Medicine, 2020, 46 : 1873 - 1883
  • [48] Multicenter Interobserver Agreement of Lung Ultrasound Findings in COVID-19 Patients
    Baloescu, C.
    Chen, A.
    Hicks, B.
    Zhu, M.
    Kaili, M.
    Chan, D.
    Malia, L.
    Coneybeare, D.
    Kessler, D.
    Moore, C.
    Schnittke, N.
    ANNALS OF EMERGENCY MEDICINE, 2022, 80 (04) : S73 - S73
  • [49] Prognostic value of bedside lung ultrasound score in patients with COVID-19
    Li Ji
    Chunyan Cao
    Ying Gao
    Wen Zhang
    Yuji Xie
    Yilian Duan
    Shuangshuang Kong
    Manjie You
    Rong Ma
    Lili Jiang
    Jie Liu
    Zhenxing Sun
    Ziming Zhang
    Jing Wang
    Yali Yang
    Qing Lv
    Li Zhang
    Yuman Li
    Jinxiang Zhang
    Mingxing Xie
    Critical Care, 24
  • [50] On lung ultrasound scoring for the early evaluation of patients with COVID-19 and dyspnea
    Gil-Rodriguez, Jaime
    Benavente-Fernandez, Alberto
    Guirao-Arrabal, Emilio
    Hernandez Quero, Jose
    EMERGENCIAS, 2022, 34 (04): : 327 - +