Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems

被引:29
|
作者
Castro, Pedro M. [1 ,2 ]
Grossmann, Ignacio E. [3 ]
机构
[1] Lab Nacl Energia & Geol, P-1649038 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, Ctr Invest Operac, P-1749016 Lisbon, Portugal
[3] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
关键词
Global optimization; Mixed integer nonlinear programming; Mixed integer linear programming; Scheduling; Hydroelectric system; OUTER-APPROXIMATION; NETWORKS; CONSTRAINTS; ALGORITHM; FRAMEWORK; PROGRAMS; SYSTEMS; DESIGN;
D O I
10.1007/s10898-014-0162-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We address nonconvex mixed-integer bilinear problems where the main challenge is the computation of a tight upper bound for the objective function to be maximized. This can be obtained by using the recently developed concept of multiparametric disaggregation following the solution of a mixed-integer linear relaxation of the bilinear problem. Besides showing that it can provide tighter bounds than a commercial global optimization solver within a given computational time, we propose to also take advantage of the relaxed formulation for contracting the variables domain and further reduce the optimality gap. Through the solution of a real-life case study from a hydroelectric power system, we show that this can be an efficient approach depending on the problem size. The relaxed formulation from multiparametric formulation is provided for a generic numeric representation system featuring a base between 2 (binary) and 10 (decimal).
引用
收藏
页码:277 / 306
页数:30
相关论文
共 50 条
  • [21] Global mixed-integer dynamic optimization
    Chachuat, B
    Singer, AB
    Barton, PI
    AICHE JOURNAL, 2005, 51 (08) : 2235 - 2253
  • [22] An exact penalty global optimization approach for mixed-integer programming problems
    S. Lucidi
    F. Rinaldi
    Optimization Letters, 2013, 7 : 297 - 307
  • [23] Outer approximation for global optimization of mixed-integer quadratic bilevel problems
    Thomas Kleinert
    Veronika Grimm
    Martin Schmidt
    Mathematical Programming, 2021, 188 : 461 - 521
  • [24] An exact penalty global optimization approach for mixed-integer programming problems
    Lucidi, S.
    Rinaldi, F.
    OPTIMIZATION LETTERS, 2013, 7 (02) : 297 - 307
  • [25] Parallel Global Optimization for Non-convex Mixed-Integer Problems
    Barkalov, Konstantin
    Lebedev, Ilya
    SUPERCOMPUTING (RUSCDAYS 2019), 2019, 1129 : 98 - 109
  • [26] A Global Optimization Algorithm for Non-Convex Mixed-Integer Problems
    Gergel, Victor
    Barkalov, Konstantin
    Lebedev, Ilya
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 12, 2019, 11353 : 78 - 81
  • [27] Outer approximation for global optimization of mixed-integer quadratic bilevel problems
    Kleinert, Thomas
    Grimm, Veronika
    Schmidt, Martin
    MATHEMATICAL PROGRAMMING, 2021, 188 (02) : 461 - 521
  • [28] A multiparametric programming approach for mixed-integer quadratic engineering problems
    Dua, V
    Bozinis, NA
    Pistikopoulos, EN
    COMPUTERS & CHEMICAL ENGINEERING, 2002, 26 (4-5) : 715 - 733
  • [29] Computing Optimality Certificates for Convex Mixed-Integer Nonlinear Problems
    Halbig, Katrin
    Huembs, Lukas
    Roesel, Florian
    Schewe, Lars
    Weninger, Dieter
    INFORMS JOURNAL ON COMPUTING, 2024, 36 (06) : 1579 - 1610
  • [30] Surrogate-based optimization for mixed-integer nonlinear problems
    Kim, Sun Hye
    Boukouvala, Fani
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 140 (140)