Machine learning identifies "rsfMRI epilepsy networks" in temporal lobe epilepsy

被引:23
|
作者
Bharath, Rose Dawn [1 ,2 ]
Panda, Rajanikant [1 ,2 ,3 ]
Raj, Jeetu [4 ]
Bhardwaj, Sujas [1 ,2 ,5 ]
Sinha, Sanjib [5 ]
Chaitanya, Ganne [5 ,6 ]
Raghavendra, Kenchaiah [5 ]
Mundlamuri, Ravindranadh C. [5 ]
Arimappamagan, Arivazhagan [7 ]
Rao, Malla Bhaskara [7 ]
Rajeshwaran, Jamuna [8 ]
Thennarasu, Kandavel [9 ]
Majumdar, Kaushik K. [10 ]
Satishchandra, Parthasarthy [7 ]
Gandhi, Tapan K. [11 ]
机构
[1] Natl Inst Mental Hlth & Neurosci, Neuroimaging & Intervent Radiol, Bangalore 560029, Karnataka, India
[2] Natl Inst Mental Hlth & Neurosci, Cognit Neurosci Ctr, Adv Brain Imaging Facil, Bangalore 560029, Karnataka, India
[3] Univ Liege, Coma Sci Grp, GIGA Consciousness, Liege, Belgium
[4] Indian Inst Technol Delhi, Dept Comp Sci, Delhi 110016, India
[5] Natl Inst Mental Hlth & Neurosci, Neurol, Bangalore 560029, Karnataka, India
[6] Thomas Jefferson Univ, Dept Neurol, Philadelphia, PA 19107 USA
[7] Natl Inst Mental Hlth & Neurosci, Neurosurg, Bangalore 560029, Karnataka, India
[8] Natl Inst Mental Hlth & Neurosci, Neuropsychol, Bangalore 560029, Karnataka, India
[9] Natl Inst Mental Hlth & Neurosci, Biostat, Bangalore 560029, Karnataka, India
[10] Indian Stat Inst, Syst Sci & Informat Unit, Bangalore 560059, Karnataka, India
[11] IIT D, Dept Elect Engn, Delhi 110016, India
关键词
Temporal lobe epilepsy; Magnetic resonance imaging; Support vector machine; Seizures; INDEPENDENT COMPONENT ANALYSIS; RESTING-STATE CONNECTIVITY; FUNCTIONAL CONNECTIVITY; BRAIN NETWORKS; DEFAULT MODE; FMRI; CLASSIFICATION; ARCHITECTURE; SELECTION; REGIONS;
D O I
10.1007/s00330-019-5997-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesExperimental models have provided compelling evidence for the existence of neural networks in temporal lobe epilepsy (TLE). To identify and validate the possible existence of resting-state epilepsy networks, we used machine learning methods on resting-state functional magnetic resonance imaging (rsfMRI) data from 42 individuals with TLE.MethodsProbabilistic independent component analysis (PICA) was applied to rsfMRI data from 132 subjects (42 TLE patients +90 healthy controls) and 88 independent components (ICs) were obtained following standard procedures. Elastic net-selected features were used as inputs to support vector machine (SVM). The strengths of the top 10 networks were correlated with clinical features to obtain rsfMRI epilepsy networks.ResultsSVM could classify individuals with epilepsy with 97.5% accuracy (sensitivity=100%, specificity=94.4%). Ten networks with the highest ranking were found in the frontal, perisylvian, cingulo-insular, posterior-quadrant, thalamic, cerebello-thalamic, and temporo-thalamic regions. The posterior-quadrant, cerebello-thalamic, thalamic, medial-visual, and perisylvian networks revealed significant correlation (r>0.40) with age at onset of seizures, the frequency of seizures, duration of illness, and a number of anti-epileptic drugs.ConclusionsIC-derived rsfMRI networks contain epilepsy-related networks and machine learning methods are useful in identifying these networks in vivo. Increased network strength with disease progression in these rsfMRI epilepsy networks could reflect epileptogenesis in TLE.Key Points center dot ICA of resting-state fMRI carries disease-specific information about epilepsy.center dot Machine learning can classify these components with 97.5% accuracy.center dot Subject-specific epilepsy networks could quantify epileptogenesis in vivo.
引用
收藏
页码:3496 / 3505
页数:10
相关论文
共 50 条
  • [41] Impaired and facilitated functional networks in temporal lobe epilepsy
    Maccotta, Luigi
    He, Biyu J.
    Snyder, Abraham Z.
    Eisenman, Lawrence N.
    Benzinger, Tammie L.
    Ances, Beau M.
    Corbetta, Maurizio
    Hogan, R. Edward
    NEUROIMAGE-CLINICAL, 2013, 2 : 862 - 872
  • [42] Functional connectivity of hippocampal networks in temporal lobe epilepsy
    Haneef, Zulfi
    Lenartowicz, Agatha
    Yeh, Hsiang J.
    Levin, Harvey S.
    Engel, Jerome, Jr.
    Stern, John M.
    EPILEPSIA, 2014, 55 (01) : 137 - 145
  • [43] Using Low-Frequency Oscillations to Detect Temporal Lobe Epilepsy with Machine Learning
    Hwang, Gyujoon
    Nair, Veena A.
    Mathis, Jed
    Cook, Cole J.
    Mohanty, Rosaleena
    Zhao, Gengyan
    Tellapragada, Neelima
    Ustine, Candida
    Nwoke, Onyekachi O.
    Rivera-Bonet, Charlene
    Rozman, Megan
    Allen, Linda
    Forseth, Courtney
    Almane, Dace N.
    Kraegel, Peter
    Nencka, Andrew
    Felton, Elizabeth
    Struck, Aaron F.
    Birn, Rasmus
    Maganti, Rama
    Conant, Lisa L.
    Humphries, Colin J.
    Hermann, Bruce
    Raghavan, Manoj
    DeYoe, Edgar A.
    Binder, Jeffrey R.
    Meyerand, Elizabeth
    Prabhakaran, Vivek
    BRAIN CONNECTIVITY, 2019, 9 (02) : 184 - 193
  • [44] Identification of four biotypes in temporal lobe epilepsy via machine learning on brain images
    Yuchao Jiang
    Wei Li
    Jinmei Li
    Xiuli Li
    Heng Zhang
    Xiutian Sima
    Luying Li
    Kang Wang
    Qifu Li
    Jiajia Fang
    Lu Jin
    Qiyong Gong
    Dezhong Yao
    Dong Zhou
    Cheng Luo
    Dongmei An
    Nature Communications, 15
  • [45] Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach
    Fallahi, Alireza
    Pooyan, Mohammad
    Lotfi, Nastaran
    Baniasad, Fatemeh
    Tapak, Leili
    Mohammadi-Mobarakeh, Neda
    Hashemi-Fesharaki, Seyed Sohrab
    Mehvari-Habibabadi, Jafar
    Ay, Mohammad Reza
    Nazem-Zadeh, Mohammad-Reza
    NEUROLOGICAL SCIENCES, 2021, 42 (06) : 2379 - 2390
  • [46] Identification of four biotypes in temporal lobe epilepsy via machine learning on brain images
    Jiang, Yuchao
    Li, Wei
    Li, Jinmei
    Li, Xiuli
    Zhang, Heng
    Sima, Xiutian
    Li, Luying
    Wang, Kang
    Li, Qifu
    Fang, Jiajia
    Jin, Lu
    Gong, Qiyong
    Yao, Dezhong
    Zhou, Dong
    Luo, Cheng
    An, Dongmei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [47] Machine learning detects EEG microstate alterations in patients living with temporal lobe epilepsy
    Raj, Kiran, V
    Rajagopalan, Shyam Sundar
    Bhardwaj, Sujas
    Panda, Rajanikant
    Reddam, Venkateswara Reddy
    Chaitanya, Ganne
    Raghavendra, Kenchaiah
    Mundlamuri, Ravindranadh C.
    Thennarasu, Kandavel
    Majumdar, Kaushik K.
    Satishchandra, Parthasarathy
    Sinha, Sanjib
    Bharath, Rose Dawn
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2018, 61 : 8 - 13
  • [48] Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach
    Alireza Fallahi
    Mohammad Pooyan
    Nastaran Lotfi
    Fatemeh Baniasad
    Leili Tapak
    Neda Mohammadi-Mobarakeh
    Seyed Sohrab Hashemi-Fesharaki
    Jafar Mehvari-Habibabadi
    Mohammad Reza Ay
    Mohammad-Reza Nazem-Zadeh
    Neurological Sciences, 2021, 42 : 2379 - 2390
  • [49] Characterizing the hyper- and hypometabolism in temporal lobe epilepsy using multivariate machine learning
    Wu, Dongyan
    Yang, Liyuan
    Gong, Gaolang
    Zheng, Yumin
    Jin, Chaoling
    Qi, Lei
    Li, Yanran
    Wu, Di
    Cui, Zaixu
    He, Xiaosong
    Ren, Liankun
    JOURNAL OF NEUROSCIENCE RESEARCH, 2021, 99 (11) : 3035 - 3046
  • [50] Decreased white matter integrity in mesial temporal lobe epilepsy: a machine learning approach
    An, Jie
    Fang, Peng
    Wang, Wensheng
    Liu, Zhenyin
    Hu, Dewen
    Qiu, Shijun
    NEUROREPORT, 2014, 25 (10) : 788 - 794