Machine learning identifies "rsfMRI epilepsy networks" in temporal lobe epilepsy

被引:23
|
作者
Bharath, Rose Dawn [1 ,2 ]
Panda, Rajanikant [1 ,2 ,3 ]
Raj, Jeetu [4 ]
Bhardwaj, Sujas [1 ,2 ,5 ]
Sinha, Sanjib [5 ]
Chaitanya, Ganne [5 ,6 ]
Raghavendra, Kenchaiah [5 ]
Mundlamuri, Ravindranadh C. [5 ]
Arimappamagan, Arivazhagan [7 ]
Rao, Malla Bhaskara [7 ]
Rajeshwaran, Jamuna [8 ]
Thennarasu, Kandavel [9 ]
Majumdar, Kaushik K. [10 ]
Satishchandra, Parthasarthy [7 ]
Gandhi, Tapan K. [11 ]
机构
[1] Natl Inst Mental Hlth & Neurosci, Neuroimaging & Intervent Radiol, Bangalore 560029, Karnataka, India
[2] Natl Inst Mental Hlth & Neurosci, Cognit Neurosci Ctr, Adv Brain Imaging Facil, Bangalore 560029, Karnataka, India
[3] Univ Liege, Coma Sci Grp, GIGA Consciousness, Liege, Belgium
[4] Indian Inst Technol Delhi, Dept Comp Sci, Delhi 110016, India
[5] Natl Inst Mental Hlth & Neurosci, Neurol, Bangalore 560029, Karnataka, India
[6] Thomas Jefferson Univ, Dept Neurol, Philadelphia, PA 19107 USA
[7] Natl Inst Mental Hlth & Neurosci, Neurosurg, Bangalore 560029, Karnataka, India
[8] Natl Inst Mental Hlth & Neurosci, Neuropsychol, Bangalore 560029, Karnataka, India
[9] Natl Inst Mental Hlth & Neurosci, Biostat, Bangalore 560029, Karnataka, India
[10] Indian Stat Inst, Syst Sci & Informat Unit, Bangalore 560059, Karnataka, India
[11] IIT D, Dept Elect Engn, Delhi 110016, India
关键词
Temporal lobe epilepsy; Magnetic resonance imaging; Support vector machine; Seizures; INDEPENDENT COMPONENT ANALYSIS; RESTING-STATE CONNECTIVITY; FUNCTIONAL CONNECTIVITY; BRAIN NETWORKS; DEFAULT MODE; FMRI; CLASSIFICATION; ARCHITECTURE; SELECTION; REGIONS;
D O I
10.1007/s00330-019-5997-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesExperimental models have provided compelling evidence for the existence of neural networks in temporal lobe epilepsy (TLE). To identify and validate the possible existence of resting-state epilepsy networks, we used machine learning methods on resting-state functional magnetic resonance imaging (rsfMRI) data from 42 individuals with TLE.MethodsProbabilistic independent component analysis (PICA) was applied to rsfMRI data from 132 subjects (42 TLE patients +90 healthy controls) and 88 independent components (ICs) were obtained following standard procedures. Elastic net-selected features were used as inputs to support vector machine (SVM). The strengths of the top 10 networks were correlated with clinical features to obtain rsfMRI epilepsy networks.ResultsSVM could classify individuals with epilepsy with 97.5% accuracy (sensitivity=100%, specificity=94.4%). Ten networks with the highest ranking were found in the frontal, perisylvian, cingulo-insular, posterior-quadrant, thalamic, cerebello-thalamic, and temporo-thalamic regions. The posterior-quadrant, cerebello-thalamic, thalamic, medial-visual, and perisylvian networks revealed significant correlation (r>0.40) with age at onset of seizures, the frequency of seizures, duration of illness, and a number of anti-epileptic drugs.ConclusionsIC-derived rsfMRI networks contain epilepsy-related networks and machine learning methods are useful in identifying these networks in vivo. Increased network strength with disease progression in these rsfMRI epilepsy networks could reflect epileptogenesis in TLE.Key Points center dot ICA of resting-state fMRI carries disease-specific information about epilepsy.center dot Machine learning can classify these components with 97.5% accuracy.center dot Subject-specific epilepsy networks could quantify epileptogenesis in vivo.
引用
收藏
页码:3496 / 3505
页数:10
相关论文
共 50 条
  • [1] Machine learning identifies “rsfMRI epilepsy networks” in temporal lobe epilepsy
    Rose Dawn Bharath
    Rajanikant Panda
    Jeetu Raj
    Sujas Bhardwaj
    Sanjib Sinha
    Ganne Chaitanya
    Kenchaiah Raghavendra
    Ravindranadh C. Mundlamuri
    Arivazhagan Arimappamagan
    Malla Bhaskara Rao
    Jamuna Rajeshwaran
    Kandavel Thennarasu
    Kaushik K. Majumdar
    Parthasarthy Satishchandra
    Tapan K. Gandhi
    European Radiology, 2019, 29 : 3496 - 3505
  • [2] Networks in Temporal Lobe Epilepsy
    Otarula, Karina A. Gonzalez
    Schuele, Stephan
    NEUROSURGERY CLINICS OF NORTH AMERICA, 2020, 31 (03) : 309 - +
  • [3] Machine Learning to Address the Enigma of Temporal Lobe Epilepsy Lateralization
    Englot, Dario J.
    EPILEPSY CURRENTS, 2021, 21 (06) : 416 - 418
  • [4] When is temporal lobe epilepsy not temporal lobe epilepsy?
    Engel, Jerome, Jr.
    BRAIN, 2016, 139 : 309 - 312
  • [5] Machine Learning Approach for the Outcome Prediction of Temporal Lobe Epilepsy Surgery
    Armananzas, Ruben
    Alonso-Nanclares, Lidia
    DeFelipe-Oroquieta, Jesus
    Kastanauskaite, Asta
    de Sola, Rafael G.
    DeFelipe, Javier
    Bielza, Concha
    Larranaga, Pedro
    PLOS ONE, 2013, 8 (04):
  • [6] Machine learning for predicting levetiracetam treatment response in temporal lobe epilepsy
    Croce, Pierpaolo
    Ricci, Lorenzo
    Pulitano, Patrizia
    Boscarino, Marilisa
    Zappasodi, Filippo
    Lanzone, Jacopo
    Narducci, Flavia
    Mecarelli, Oriano
    Di Lazzaro, Vincenzo
    Tombini, Mario
    Assenza, Giovanni
    CLINICAL NEUROPHYSIOLOGY, 2021, 132 (12) : 3035 - 3042
  • [7] Epileptogenic networks in extra temporal lobe epilepsy
    Hall, Gerard R.
    Hutchings, Frances
    Horsley, Jonathan
    Simpson, Callum M.
    Wang, Yujiang
    de Tisi, Jane
    Miserocchi, Anna
    Mcevoy, Andrew W.
    Vos, Sjoerd B.
    Winston, Gavin P.
    Duncan, John S.
    Taylor, Peter N.
    NETWORK NEUROSCIENCE, 2023, 7 (04) : 1351 - 1362
  • [8] Abnormalities of language networks in temporal lobe epilepsy
    Powell, H. W. R.
    Parker, G. J. M.
    Alexander, D. C.
    Symms, M. R.
    Wheeler-Kingshott, C. A. M.
    Boulby, P. A.
    Barker, G. J.
    Koepp, M. J.
    Duncan, J. S.
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2007, 78 (02): : 215 - 215
  • [9] Abnormalities of language networks in temporal lobe epilepsy
    Powell, H. W. Robert
    Parker, Geoff J. M.
    Alexander, Daniel C.
    Symms, Mark R.
    Boulby, Philip A.
    Wheeler-Kingshott, Claudia A. M.
    Barker, Gareth J.
    Koepp, Matthias J.
    Duncan, John S.
    NEUROIMAGE, 2007, 36 (01) : 209 - 221
  • [10] Resting state networks in temporal lobe epilepsy
    Cataldi, Mauro
    Avoli, Massimo
    de Villers-Sidani, Etienne
    EPILEPSIA, 2013, 54 (12) : 2048 - 2059