GPU-Accelerated Poincare Map Method for Harmonic-Oriented Analyses of Power Systems

被引:0
|
作者
Garcia, Norberto [1 ]
Carlos Olmos, Roberto [1 ]
机构
[1] Univ Michoacana, Fac Ingn Elect, Morelia, Michoacan, Mexico
关键词
Graphic processing units; harmonics; periodic steady-state; Newton method; Poincare map; PERIODIC STEADY-STATE;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A parallel Poincare map method based on graphic processing units (GPU), suitable for harmonic-oriented studies, is presented in this paper. It relies on a Newton method and a transition matrix computed by columns on the GPU. A parallel kernel for the Trapezoidal Rule integration routine allows solving the set of ordinary differential equations, whilst sparse matrices involved in the Trapezoidal Rule are stored at the GPU using a Compressed Sparse Row (CSR) format. Direct and iterative solvers based on LU decomposition and Krylov subspace methods are used to solve system of equations arising from the Newton-Raphson algorithm. Results in terms of convergence to the periodic steady-state and speedup factors of order 7 confirm that this novel GPU-based approach is an efficient parallel version of the Poincare map method. An advanced memory optimization approach based on pinned memory and asynchronous transfers provides further computational savings of the order of 20%.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Challenges in GPU-Accelerated Nonlinear Dynamic Analysis for Structural Systems
    Simpson, Barbara G.
    Zhu, Minjie
    Seki, Akiri
    Scott, Michael
    JOURNAL OF STRUCTURAL ENGINEERING, 2023, 149 (03)
  • [32] A GPU-Accelerated Hybridizable Discontinuous Galerkin Method for Linear Elasticity
    Fabien, Maurice S.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (02) : 513 - 545
  • [33] An Effective Matrix Compression Method for GPU-Accelerated Thermal Analysis
    Chiou, Lih-Yih
    Lu, Liang-Ying
    Lin, Chieh-Yu
    2015 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2015,
  • [34] Electromagnetic metamaterial simulations using a GPU-accelerated FDTD method
    Seok, Myung-Su
    Lee, Min-Gon
    Yoo, SeokJae
    Park, Q-Han
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 67 (12) : 2026 - 2032
  • [35] Performance comparison of GPU-accelerated fast motion estimation method
    Chen, Pengcheng
    Peng, Bo
    Zou, Anxin
    Xu, Luwen
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 660 - 665
  • [36] GPU-accelerated sparse matrices parallel inversion algorithm for large-scale power systems
    Zhou, Gan
    Feng, Yanjun
    Bo, Rui
    Zhang, Tao
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 111 : 34 - 43
  • [37] Weighted Block-Asynchronous Iteration on GPU-Accelerated Systems
    Anzt, Hartwig
    Tomov, Stanimire
    Dongarra, Jack
    Heuveline, Vincent
    EURO-PAR 2012: PARALLEL PROCESSING WORKSHOPS, 2013, 7640 : 145 - 154
  • [38] A New LU Decomposition on Hybrid GPU-Accelerated Multicore Systems
    Eduardo Gonzalez, Hector
    Carmona, Juan
    COMPUTACION Y SISTEMAS, 2013, 17 (03): : 413 - 422
  • [39] GPU-Accelerated Monte Carlo Simulations of Dense Stellar Systems
    Pattabiraman, B.
    Umbreit, S.
    Liao, W.
    Rasio, F.
    Kalogera, V.
    Choudhary, A.
    ADVANCES IN COMPUTATIONAL ASTROPHYSICS: METHODS, TOOLS AND OUTCOMES, 2012, 453 : 329 - 332
  • [40] Block-asynchronous Multigrid Smoothers for GPU-accelerated Systems
    Anzt, Hartwig
    Tomov, Stanimire
    Gates, Mark
    Dongarra, Jack
    Heuveline, Vincent
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 7 - 16