Robust Nonparametric Estimation for Functional Spatial Regression

被引:0
|
作者
Attouch, Mohammed K. [1 ]
Gheriballah, Abdelkader [1 ]
Laksaci, Ali [1 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Sidi Bel Abbes, Algeria
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This contribution deals with robust nonparametric regression analysis when the regressors are functional random fields. More precisely, we propose a family of robust nonparametric estimators for nonparametric functional spatial regression based on the kernel method. The main results of this work are the establishment of the almost complete convergence rate of these estimators.
引用
收藏
页码:27 / 31
页数:5
相关论文
共 50 条
  • [31] About algorithm of robust nonparametric estimation of regression function on observations
    Denisov, M. A.
    Chzhan, E. A.
    Korneeva, A. A.
    Kukartsev, V. V.
    [J]. IX INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC AND RESEARCH CONFERENCE MODERN ISSUES IN SCIENCE AND TECHNOLOGY / WORKSHOP ADVANCED TECHNOLOGIES IN AEROSPACE, MECHANICAL AND AUTOMATION ENGINEERING, 2018, 450
  • [32] Nonparametric robust regression function estimation from ergodic samples
    Laib, N
    OuldSaid, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (03): : 271 - 276
  • [33] Local linear estimate of the nonparametric robust regression in functional data
    Belarbi, Faiza
    Chemikh, Souheyla
    Laksaci, Ali
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 134 : 128 - 133
  • [34] Strong convergence of robust equivariant nonparametric functional regression estimators
    Boente, Graciela
    Vahnovan, Alejandra
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 100 : 1 - 11
  • [35] Spatial nonparametric regression estimation: Non-isotropic case
    Lu Z.-D.
    Chen X.
    [J]. Acta Mathematicae Applicatae Sinica, 2002, 18 (4) : 641 - 656
  • [36] Spatial Nonparametric Regression Estimation: Non-isotropic Case
    Zu-di Lu
    [J]. Acta Mathematicae Applicatae Sinica, 2002, (04) : 641 - 656
  • [37] Spatial regression estimation for functional data with spatial dependency
    Ternynck, Camille
    [J]. JOURNAL OF THE SFDS, 2014, 155 (02): : 138 - 160
  • [38] Nonparametric estimation of the relative error in functional regression and censored data
    Mechab, Boubaker
    Hamidi, Nesrine
    Benaissa, Samir
    [J]. CHILEAN JOURNAL OF STATISTICS, 2019, 10 (02): : 177 - 195
  • [39] Nonparametric regression estimation for dependent functional data: asymptotic normality
    Masry, E
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (01) : 155 - 177
  • [40] Consistency of the recursive nonparametric regression estimation for dependent functional data
    Amiri, Aboubacar
    Thiam, Baba
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (03) : 471 - 487