From local behaviors to global performance in a multi-agent system

被引:7
|
作者
Hu, BC [1 ]
Liu, JM [1 ]
Jin, XL [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
关键词
D O I
10.1109/IAT.2004.1342960
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we show our current work on the relationships between local behaviors of agents and global performance of multi-agent systems. We conduct our experiments on RoboNBA(1), which is a multi-agent system testbed Local behaviors and global performance in RoboNBA are introduced In addition, we address the problem of how to quantitatively measure the global performance in RoboNBA. Through experiments and analysis, we try to examine how agents' local behaviors can lead to interesting global performance of a match (e.g., optimized match results) in three problems: (1) cooperation between agents; (2) rational decision making; (3) coordination among agents.
引用
收藏
页码:309 / 315
页数:7
相关论文
共 50 条
  • [1] Emergence of specialization from global optimizing evolution in a multi-agent system
    Chai, Lei
    Chen, Jiawei
    Han, Zhangang
    Di, Zengru
    Fan, Ying
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 4, PROCEEDINGS, 2007, 4490 : 98 - +
  • [2] MASCEM: Optimizing the performance of a multi-agent system
    Santos, Gabriel
    Pinto, Tiago
    Praca, Isabel
    Vale, Zita
    [J]. ENERGY, 2016, 111 : 513 - 524
  • [3] Global extremum seeking by Kriging with a multi-agent system
    Kahn, Arthur
    Marzat, Julien
    Piet-Lahanier, Helene
    Kieffer, Michel
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 526 - 531
  • [4] Local electrical market based on a multi-agent system
    Dominguez-Navarro, J. A.
    Bayod-Rujula, A. A.
    Yusta-Loyo, J. M.
    Bernal-Agustin, J. L.
    Dufo-Lopez, R.
    Artal-Sevil, S.
    Coronado-Mendoza, A.
    [J]. PROCEEDINGS OF THE 2017 IEEE 14TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC 2017), 2017, : 239 - 244
  • [5] Local electrical market based on a Multi-agent system
    Domínguez-Navarro, J.A.
    Bayod-Rújula, A.A.
    Yusta-Loyo, J.M.
    Bernal-Agustín, J.L.
    Dufo-López, R.
    Artal-Sevil, S.
    Coronado-Mendoza, A.
    [J]. Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control, ICNSC 2017, 2017, : 239 - 244
  • [6] The constructing of multi-agent intelligent control system for behaviors coevolution
    Luo, Jie
    Duan, Jianmin
    Chen, Jianxin
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 4551 - +
  • [7] A new multi-agent system to simulate the foraging behaviors of Physarum
    Yuxin Liu
    Chao Gao
    Zili Zhang
    Yuheng Wu
    Mingxin Liang
    Li Tao
    Yuxiao Lu
    [J]. Natural Computing, 2017, 16 : 15 - 29
  • [8] A new multi-agent system to simulate the foraging behaviors of Physarum
    Liu, Yuxin
    Gao, Chao
    Zhang, Zili
    Wu, Yuheng
    Liang, Mingxin
    Tao, Li
    Lu, Yuxiao
    [J]. NATURAL COMPUTING, 2017, 16 (01) : 15 - 29
  • [9] Establishing global properties of multi-agent systems via local laws
    Zhang, Wenxuan
    Serban, Constantin
    Minsky, Naftaly
    [J]. ENVIRONMENTS FOR MULTI-AGENT SYSTEMS III, 2007, 4389 : 170 - +
  • [10] All learning is local: Multi-agent learning in global reward games
    Chang, YH
    Ho, A
    Kaelbling, LP
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 807 - 814