New results for EP matrices in indefinite inner product spaces

被引:2
|
作者
Radojevic, Ivana M. [1 ]
机构
[1] Univ Nis, Fac Sci & Math, Dept Math, Nish 18000, Serbia
关键词
EP matrix; indefinite matrix product; reverse order law; partial order; indefinite inner product space;
D O I
10.1007/s10587-014-0086-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study J-EP matrices, as a generalization of EP-matrices in indefinite inner product spaces, with respect to indefinite matrix product. We give some properties concerning EP and J-EP matrices and find connection between them. Also, we present some results for reverse order law for Moore-Penrose inverse in indefinite setting. Finally, we deal with the star partial ordering and improve some results given in the "EP matrices in indefinite inner product spaces" (2012), by relaxing some conditions.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 50 条
  • [31] On sums of range symmetric matrices with reference to indefinite inner product
    D. Krishnaswamy
    A. Narayanasamy
    [J]. Indian Journal of Pure and Applied Mathematics, 2019, 50 : 499 - 510
  • [32] On sums of range symmetric matrices with reference to indefinite inner product
    Krishnaswamy, D.
    Narayanasamy, A.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (02): : 499 - 510
  • [33] Resolvent matrices in degenerated inner product spaces
    Woracek, H
    [J]. MATHEMATISCHE NACHRICHTEN, 2000, 213 : 155 - 175
  • [34] Classification of linear mappings between indefinite inner product spaces
    Meleiro, Juan
    Sergeichuk, Vladimir V.
    Solovera, Thiago
    Zaidan, Andre
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 : 356 - 374
  • [35] OPERATORS OF FORM C]C IN INDEFINITE INNER PRODUCT SPACES
    BOGNAR, J
    KRAMLI, A
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 1968, 29 (1-2): : 19 - &
  • [36] Moore-Penrose Inverse in Indefinite Inner Product Spaces
    Radojevic, Ivana M.
    Djordjevic, Dragan S.
    [J]. FILOMAT, 2017, 31 (12) : 3847 - 3857
  • [37] Polar decompositions of normal operators in indefinite inner product spaces
    Mehl, Christian
    Ran, Andre C. M.
    Rodman, Leiba
    [J]. OPERATOR THEORY IN KREIN SPACES AND NONLINEAR EIGENVALUE PROBLEMS, 2006, 162 : 277 - 292
  • [38] SHIFTS ON INDEFINITE INNER PRODUCT-SPACES .2.
    MCENNIS, BW
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1982, 100 (01) : 177 - 183
  • [39] Semi-indefinite inner product and generalized Minkowski spaces
    Horvath, A. G.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (09) : 1190 - 1208
  • [40] Representations of Operator Matrixes on Indefinite Inner Product Spaces and Applications
    Su, Guixian
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 147 - 149