Spectral tunability of realistic plasmonic nanoantennas

被引:6
|
作者
Portela, Alejandro [1 ]
Yano, Takaaki [2 ]
Santschi, Christian [3 ]
Matsui, Hiroaki [1 ]
Hayashi, Tomohiro [2 ]
Hara, Masahiko [2 ]
Martin, Olivier J. F. [3 ]
Tabata, Hitoshi [1 ]
机构
[1] Univ Tokyo, Sch Engn, Dept Bioengn, Bunkyo Ku, Tokyo 1138656, Japan
[2] Tokyo Inst Technol, Dept Elect Chem, Midori Ku, Yokohama, Kanagawa 2268502, Japan
[3] Swiss Fed Inst Technol Lausanne, Nanophoton & Metrol Lab, CH-1015 Lausanne, Switzerland
关键词
RAMAN-SCATTERING; RESONANCE; SHAPE; FLUORESCENCE; SPECTROSCOPY;
D O I
10.1063/1.4894633
中图分类号
O59 [应用物理学];
学科分类号
摘要
Single nanoantenna spectroscopy was carried out on realistic dipole nanoantennas with various arm lengths and gap sizes fabricated by electron-beam lithography. A significant difference in resonance wavelength between realistic and ideal nanoantennas was found by comparing their spectral response. Consequently, the spectral tunability (96 nm) of the structures was significantly lower than that of simulated ideal nanoantennas. These observations, attributed to the nanofabrication process, are related to imperfections in the geometry, added metal adhesion layer, and shape modifications, which are analyzed in this work. Our results provide important information for the design of dipole nanoantennas clarifying the role of the structural modifications on the resonance spectra, as supported by calculations. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Excitation of plasmonic gap waveguides by nanoantennas
    Wen, Jing
    Romanov, Sergei
    Peschel, Ulf
    [J]. OPTICS EXPRESS, 2009, 17 (08): : 5925 - 5932
  • [42] Enhanced nonlinearities using plasmonic nanoantennas
    Chen, Pai-Yen
    Argyropoulos, Christos
    Alu, Andrea
    [J]. NANOPHOTONICS, 2012, 1 (3-4) : 221 - 233
  • [43] Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas
    Karki, Akchheta
    Cincotti, Giancarlo
    Chen, Shangzhi
    Stanishev, Vallery
    Darakchieva, Vanya
    Wang, Chuanfei
    Fahlman, Mats
    Jonsson, Magnus P.
    [J]. ADVANCED MATERIALS, 2022, 34 (13)
  • [44] Vibrational overtones spectroscopy enabled by plasmonic nanoantennas
    Dadadzhanov, Daler R.
    Vartanyan, Tigran A.
    Karabchevsky, Alina
    [J]. PLASMONICS: DESIGN, MATERIALS, FABRICATION, CHARACTERIZATION, AND APPLICATIONS XVI, 2018, 10722
  • [45] Integration of magnetic plasmonic nanoantennas on a silicon chip
    Losada, J.
    Garcia-Meca, C.
    Martinez, A.
    [J]. 2017 11TH INTERNATIONAL CONGRESS ON ENGINEERED MATERIALS PLATFORMS FOR NOVEL WAVE PHENOMENA (METAMATERIALS), 2017, : 205 - 207
  • [46] Optical properties of niobium nitride plasmonic nanoantennas for the near- and mid-infrared spectral range
    Karl, Philipp
    Ubl, Monika
    Hentschel, Mario
    Flad, Philipp
    Chiao, Zong-Yi
    Yang, Jing-Wei
    Lu, Yu-Jung
    Giessen, Harald
    [J]. OPTICAL MATERIALS EXPRESS, 2020, 10 (10) : 2597 - 2606
  • [47] Plasmonic nanoantennas for excitation of ultrafast magnetization dynamics
    Sylgacheva, D. A.
    Kozhaev, M. A.
    Krichevsky, D. M.
    Belotelov, V., I
    [J]. 2019 THIRTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS)), 2019, : 417 - 419
  • [48] Gold Nanoantennas on a Pedestal for Plasmonic Enhancement in the Infrared
    Huck, Christian
    Toma, Andrea
    Neubrech, Frank
    Chirumamilla, Manohar
    Vogt, Jochen
    De Angelis, Francesco
    Pucci, Annemarie
    [J]. ACS PHOTONICS, 2015, 2 (04): : 497 - 505
  • [49] Delocalization of Nonlinear Optical Responses in Plasmonic Nanoantennas
    Viarbitskaya, Sviatlana
    Demichel, Olivier
    Cluzel, Benoit
    des Francs, Gerard Colas
    Bouhelier, Alexandre
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (19)
  • [50] Periodic plasmonic nanoantennas in a piecewise homogeneous background
    Mousavi, Saba Siadat
    Berini, Pierre
    McNamara, Derek
    [J]. OPTICS EXPRESS, 2012, 20 (16): : 18044 - 18065