CROP CLASSIFICATION USING A COMBINATION OF SPECTRAL INDICES FROM SPATIOTEMPORAL MULTISPECTRAL IMAGERY AND MACHINE LEARNING

被引:1
|
作者
Nofrizal, Adenan Yandra [1 ]
Sonobe, Rei [1 ]
机构
[1] Shizuoka Univ, Fac Agr, Shizuoka, Japan
关键词
crop; sentinel-2; KELM; RF; SVM; LANDSAT;
D O I
10.1109/IGARSS46834.2022.9884135
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study aims to evaluate the potential of spatiotemporal multispectral (MSI) Sentinel-2A and Sentinel 2B for crop classification. These satellites have 13 bands covering the visible, near infrared and short-wave infrared (SWIR) wavelength regions, offer a vast number of vegetation indices. For generating crop maps, the three common approaches namely Kernel extreme learning machine (KELM), Random Forest (RF) and Support Vector Machine (SVM) were applied and compared. 82 Vegetation indices were added to improve classification accuracy. SVM yielded the highest performance to classify the six crop types includes: Beans, Beet, Grass, Maize, Potato and Wheat, achieving overall accuracies of 0.63, 0.82, 0.88 and 0.90. This study showed that combination of multispectral remote sensing data and machine learning algorithms had effective to crop type classification.
引用
收藏
页码:5820 / 5823
页数:4
相关论文
共 50 条
  • [21] Prediction of Antioxidant Activity of Cherry Fruits from UAS Multispectral Imagery Using Machine Learning
    Karydas, Christos
    Iatrou, Miltiadis
    Kouretas, Dimitrios
    Patouna, Anastasia
    Iatrou, George
    Lazos, Nikolaos
    Gewehr, Sandra
    Tseni, Xanthi
    Tekos, Fotis
    Zartaloudis, Zois
    Mainos, Evangelos
    Mourelatos, Spiros
    [J]. ANTIOXIDANTS, 2020, 9 (02)
  • [22] Estimation of aboveground biomass from spectral and textural characteristics of paddy crop using UAV-multispectral images and machine learning techniques
    Biswal, Sudarsan
    Pathak, Navneet
    Chatterjee, Chandranath
    Mailapalli, Damodhara Rao
    [J]. GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [23] Estimation of Strawberry Crop Productivity by Machine Learning Algorithms Using Data from Multispectral Images
    de Oliveira, Larissa Silva
    Castoldi, Renata
    Martins, George Deroco
    Medeiros, Matheus Henrique
    [J]. AGRONOMY-BASEL, 2023, 13 (05):
  • [24] Classification of IKONOS multispectral imagery based on spectral transform and fusion
    State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    [J]. Geomatics Inf. Sci. Wuhan Univ., 2007, 6 (502-505):
  • [25] A Toolkit for the Spatiotemporal Analysis of Eutrophication Using Multispectral Imagery Collected from Drones
    Barajas, Jorge
    Detweiler, Christian
    Lager, Cailyn
    Seaver, Charles
    Vakarchuk, Mark
    Henriques, Justin
    Forsyth, Jason
    [J]. 2021 SYSTEMS AND INFORMATION ENGINEERING DESIGN SYMPOSIUM (IEEE SIEDS 2021), 2021, : 18 - 22
  • [26] Mapping almond stem water potential using machine learning and multispectral imagery
    Savchik, Peter
    Nocco, Mallika
    Kisekka, Isaya
    [J]. IRRIGATION SCIENCE, 2024,
  • [27] Introduction of Spatio-Spectral Indices for Using Spatial Data in Multispectral Image Classification
    Ashoori, Hamed
    Zoej, Mohamad Javad Valadan
    Sahebi, Mahmod Reza
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (06) : 1003 - 1017
  • [28] Pumice Raft Detection Using Machine-Learning on Multispectral Satellite Imagery
    Zheng, Maggie
    Mittal, Tushar
    Fauria, Kristen E.
    Subramaniam, Ajit
    Jutzeler, Martin
    [J]. FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [29] Crop Classification of Satellite Imagery Using Synthetic Multitemporal and Multispectral Images in Convolutional Neural Networks
    Siesto, Guillermo
    Fernandez-Sellers, Marcos
    Lozano-Tello, Adolfo
    [J]. REMOTE SENSING, 2021, 13 (17)
  • [30] Introduction of Spatio-Spectral Indices for Using Spatial Data in Multispectral Image Classification
    Hamed Ashoori
    Mohamad Javad Valadan Zoej
    Mahmod Reza Sahebi
    [J]. Journal of the Indian Society of Remote Sensing, 2019, 47 : 1003 - 1017