Mechanical Strain Using 2D and 3D Bioreactors Induces Osteogenesis: Implications for Bone Tissue Engineering

被引:0
|
作者
van Griensven, M. [1 ]
Diederichs, S. [1 ,2 ]
Roeker, S. [2 ]
Boehm, S. [2 ]
Peterbauer, A. [1 ]
Wolbank, S. [1 ]
Riechers, D. [2 ]
Stahl, F. [2 ]
Kasper, C. [2 ]
机构
[1] Ludwig Boltzmann Inst Expt & Clin Traumatol, A-1200 Vienna, Austria
[2] Leibniz Univ Hannover, Inst Tech Chem, D-30167 Hannover, Germany
关键词
Biomaterials; Bone; Mechanical strain; Rotating bed bioreactor; Tissue engineering; MARROW STROMAL CELLS; PATELLAR TENDON FIBROBLASTS; MESENCHYMAL STEM-CELLS; OSTEOBLAST-LIKE CELLS; EXTRACELLULAR-MATRIX; IN-VITRO; MORPHOGENETIC PROTEIN-2; BIODEGRADABLE MATERIALS; PROLIFERATIVE RESPONSE; SIGNAL-TRANSDUCTION;
D O I
10.1007/10_2008_14
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Fracture healing is a complicated process involving many growth factors, cells, and physical forces. In cases, where natural healing is not able, efforts have to be undertaken to improve healing. For this purpose, tissue engineering, may be an option. In order to stimulate cells to form a bone tissue several factors are needed: cells, scaffold, and growth factors. Stem cells derived from bone marrow or adipose tissues are the most useful in this regard. The differentiation of the cells can be accelerated using mechanical stimulation. The first part of this chapter describes the influence of longitudinal strain application. The second part uses a sophisticated approach with stem cells on a newly developed biomaterial (Sponceram) in a rotating bed bioreactor with the administration of bone morphogenetic protein-2. It is shown that such an approach is able to produce bone tissue constructs. This may lead to production of larger constructs that can be used in clinical applications.
引用
收藏
页码:95 / 123
页数:29
相关论文
共 50 条
  • [1] Bioreactors for 3D tissue engineering
    Galaction, Anca-Irina
    Cacaval, Dan
    Folescu, Elena
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2007, 12 (06): : 3457 - 3466
  • [2] Building a better bone: The synergy of 2D nanomaterials and 3D printing for bone tissue engineering
    Li, Na
    Cui, Junkui
    Chi, Minghan
    Thieringer, Florian M.
    Sharma, Neha
    MATERIALS & DESIGN, 2023, 234
  • [3] Bone tissue engineering using 3D printing
    Bose, Susmita
    Vahabzadeh, Sahar
    Bandyopadhyay, Amit
    MATERIALS TODAY, 2013, 16 (12) : 496 - 504
  • [4] 2D/3D image analysis as a tool for tissue engineering
    Martin, I
    Toso, C
    Beltrame, F
    Diaspro, A
    Fato, M
    Facchini, A
    Marcacci, M
    DePasquale, V
    Strocchi, R
    Zaffagnini, S
    MINERVA BIOTECNOLOGICA, 1997, 9 (01) : 11 - 16
  • [5] Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds
    Bose, Susmita
    Tarafder, Solaiman
    Bandyopadhyay, Amit
    ANNALS OF BIOMEDICAL ENGINEERING, 2017, 45 (01) : 261 - 272
  • [6] Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds
    Susmita Bose
    Solaiman Tarafder
    Amit Bandyopadhyay
    Annals of Biomedical Engineering, 2017, 45 : 261 - 272
  • [7] 3D printing of bioreactors in tissue engineering: A generalised approach
    Gensler, Marius
    Leikeim, Anna
    Moellmann, Marc
    Komma, Miriam
    Heid, Susanne
    Mueller, Claudia
    Boccaccini, Aldo R.
    Salehi, Sahar
    Groeber-Becker, Florian
    Hansmann, Jan
    PLOS ONE, 2020, 15 (11):
  • [8] 3D strain imaging using a rectilinear 2D array
    Awad, Samer I.
    Yen, Jesse T.
    ULTRASONIC IMAGING, 2007, 29 (04) : 220 - 230
  • [9] 2D and 3D structured nanofibrous scaffolds by electrospinning/electrospraying for tissue engineering
    Hebraud, Anne
    Wittmer, Corinne R.
    Nedjari, Salima
    Ahirwal, Deepak
    Schlatter, Guy
    NART 2015-Nanofibers, Applications and Related Technologies, 2015, : 219 - 224
  • [10] Designing 2D and 3D textiles using yarn engineering and VR
    Stjepanovic, Z
    Jezernik, A
    DESIGN 2002: Proceedings of the 7th International Design Conference, Vols 1 and 2, 2002, : 701 - 706