Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring

被引:14
|
作者
Wang, Dengyin [1 ]
Ou, Shikun [1 ]
Yu, Qiu [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221008, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2006年 / 54卷 / 05期
基金
中国国家自然科学基金;
关键词
intermediate Lie algebras; derivations of Lie algebras; commutative rings;
D O I
10.1080/03081080500412463
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an arbitrary commutative ring with identity, gl(n, R) the general linear Lie algebra over R consisting of all n x n matrices over R and with the bracket operation [x, y] = xy - yx, t (resp., u) the Lie subalgebra of gl(n, R) consisting of all n x n upper triangular (resp., strictly upper triangular) matrices over R and d the Lie subalgebra of gl(n, R) consisting of all n x n diagonal matrices over R. The aim of this article is to give an explicit description of the derivation algebras of the intermediate Lie algebras between d and t.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 50 条