共 50 条
Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring
被引:14
|作者:
Wang, Dengyin
[1
]
Ou, Shikun
[1
]
Yu, Qiu
[1
]
机构:
[1] China Univ Min & Technol, Dept Math, Xuzhou 221008, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
intermediate Lie algebras;
derivations of Lie algebras;
commutative rings;
D O I:
10.1080/03081080500412463
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let R be an arbitrary commutative ring with identity, gl(n, R) the general linear Lie algebra over R consisting of all n x n matrices over R and with the bracket operation [x, y] = xy - yx, t (resp., u) the Lie subalgebra of gl(n, R) consisting of all n x n upper triangular (resp., strictly upper triangular) matrices over R and d the Lie subalgebra of gl(n, R) consisting of all n x n diagonal matrices over R. The aim of this article is to give an explicit description of the derivation algebras of the intermediate Lie algebras between d and t.
引用
收藏
页码:369 / 377
页数:9
相关论文