An empirical comparison of machine learning techniques for chant classification

被引:0
|
作者
Kokkinidis, K. [1 ]
Mastoras, T. [1 ]
Tsagaris, A. [2 ]
Fotaris, P. [3 ]
机构
[1] Univ Macedonia, Dept Appl Informat, Thessaloniki, Greece
[2] Technol & Educ Inst Thessaloniki, Dept Automat Engn, Thessaloniki, Greece
[3] Univ Brighton, Sch Comp Engn & Math, Brighton, E Sussex, England
关键词
Human Computer Interaction; Singing Voice; Hidden Markov Models (HMM); Artificial Neural Networks (ANN); Sound signal; Machine Learning; Jackknife - Cross Validation; SPEECH;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A comparative evaluation of applying algorithms is presented, based on Hidden Markov Models and Artificial Neural Networks, in order to create a corpus of chants through vocal music recognition. The sound signal sequences of singing performances were captured, a training dataset was created based on the extracted sound features of the captured sound signal sequences and finally, the music recognition system was trained using the mentioned algorithms. Finally, the music recognition was performed and a score of successfully recognized of hymn performances was calculated by utilizing the cross - validation statistical method Jackknife. The results of the evaluation revealed that HMM algorithm is more efficient than ANN in order to train a machine learning system for chanting recognition. The findings can be used to build and/or improve the performance of machine learning systems for monophonic singing recognition.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Frog classification using machine learning techniques
    Huang, Chenn-Jung
    Yang, Yi-Ju
    Yang, Dian-Xiu
    Chen, You-Jia
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 3737 - 3743
  • [32] CLASSIFICATION OF ECG ARRHYTHMIA WITH MACHINE LEARNING TECHNIQUES
    Bulbul, Halil Ibrahim
    Usta, Nese
    Yildiz, Musa
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 546 - 549
  • [33] Exploration of Machine Learning Techniques for Defect Classification
    Prakash, B. V. Ajay
    Ashoka, D. V.
    Aradya, V. N. Manjunath
    COMPUTING AND NETWORK SUSTAINABILITY, 2017, 12 : 145 - 153
  • [34] Classification of Mammography Images by Machine Learning Techniques
    Bektas, Burcu
    Entre, Ilkim Ecem
    Kartal, Elif
    Gulsecen, Sevinc
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2018, : 580 - 585
  • [35] Machine learning techniques for classification of breast tissue
    Helwan, Abdulkader
    Idoko, John Bush
    Abiyev, Rahib H.
    9TH INTERNATIONAL CONFERENCE ON THEORY AND APPLICATION OF SOFT COMPUTING, COMPUTING WITH WORDS AND PERCEPTION, ICSCCW 2017, 2017, 120 : 402 - 410
  • [36] Machine Learning Techniques for Classification of Livestock Behavior
    Kleanthous, Natasa
    Hussain, Abir
    Mason, Alex
    Sneddon, Jennifer
    Shaw, Andy
    Fergus, Paul
    Chalmers, Carl
    Al-Jumeily, Dhiya
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT IV, 2018, 11304 : 304 - 315
  • [37] Microalgae classification based on machine learning techniques
    Otalora, P.
    Guzman, J. L.
    Acien, F. G.
    Berenguel, M.
    Reul, A.
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2021, 55
  • [38] Use of Machine Learning Techniques in Soil Classification
    Aydin, Yaren
    Isikdag, Umit
    Bekdas, Gebrail
    Nigdeli, Sinan Melih
    Geem, Zong Woo
    SUSTAINABILITY, 2023, 15 (03)
  • [39] Machine learning: a review of classification and combining techniques
    Kotsiantis, S. B.
    Zaharakis, I. D.
    Pintelas, P. E.
    ARTIFICIAL INTELLIGENCE REVIEW, 2006, 26 (03) : 159 - 190
  • [40] Detecting Malware with Classification Machine Learning Techniques
    Yusof, Mohd Azahari Mohd
    Abdullah, Zubaile
    Ali, Firkhan Ali Hamid
    Sukri, Khairul Amin Mohamad
    Hussain, Hanizan Shaker
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 167 - 172