On integer Chebyshev polynomials

被引:15
|
作者
Habsieger, L [1 ]
Salvy, B [1 ]
机构
[1] INST NATL RECH INFORMAT & AUTOMAT,F-78153 LE CHESNAY,FRANCE
关键词
D O I
10.1090/S0025-5718-97-00829-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
(W)e are concerned with the problem of minimizing the supremum norm on [0, 1] of a nonzero polynomial of degree at most n with integer coefficients. We use the structure of such polynomials to derive an efficient algorithm for computing them. We give a table of these polynomials for degree up to 75 and use a value from this table to answer an open problem due to P. Borwein and T. Erdelyi and improve a lower bound due to Flammang et al.
引用
收藏
页码:763 / 770
页数:8
相关论文
共 50 条
  • [41] Invariants and Chebyshev polynomials
    V. A. Yudin
    Proceedings of the Steklov Institute of Mathematics, 2009, 266 : 227 - 245
  • [42] An Extension of the Chebyshev Polynomials
    Anna Tatarczak
    Complex Analysis and Operator Theory, 2016, 10 : 1519 - 1533
  • [43] On Chebyshev polynomials and their applications
    Xingxing Lv
    Shimeng Shen
    Advances in Difference Equations, 2017
  • [44] A note on Chebyshev polynomials
    Dattoli G.
    Sacchetti D.
    Cesarano C.
    Annali dell’Università di Ferrara, 2001, 47 (1): : 107 - 115
  • [45] The Resultant of Chebyshev Polynomials
    Jacobs, David P.
    Rayes, Mohamed O.
    Trevisan, Vilmar
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (02): : 288 - 296
  • [46] Monic integer Chebyshev problem
    Borwein, PB
    Pinner, CG
    Pritsker, IE
    MATHEMATICS OF COMPUTATION, 2003, 72 (244) : 1901 - 1916
  • [47] The Multivariate Integer Chebyshev Problem
    Borwein, P. B.
    Pritsker, I. E.
    CONSTRUCTIVE APPROXIMATION, 2009, 30 (02) : 299 - 310
  • [48] The Multivariate Integer Chebyshev Problem
    P. B. Borwein
    I. E. Pritsker
    Constructive Approximation, 2009, 30
  • [49] Some applications of the Chebyshev polynomials to polynomials in general
    Jameson, G. J. O.
    MATHEMATICAL GAZETTE, 2025, 109 (574): : 93 - 100
  • [50] On the (p, q)-Chebyshev Polynomials and Related Polynomials
    Kizilates, Can
    Tuglu, Naim
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (02)