Analyzing Spatial Heterogeneity in DCE- and DW-MRI Parametric Maps to Optimize Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer

被引:33
|
作者
Li, Xia [1 ]
Kang, Hakmook [2 ]
Arlinghaus, Lori R. [1 ]
Abramson, Richard G. [1 ,3 ,4 ]
Chakravarthy, A. Bapsi [3 ,5 ]
Abramson, Vandana G. [3 ,6 ]
Farley, Jaime [3 ,6 ]
Sanders, Melinda [3 ,7 ]
Yankeelov, Thomas E. [1 ,3 ,4 ,8 ,9 ,10 ]
机构
[1] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Dept Biostat, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Med Oncol, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Pathol, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[9] Vanderbilt Univ, Dept Phys, Nashville, TN 37232 USA
[10] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
来源
TRANSLATIONAL ONCOLOGY | 2014年 / 7卷 / 01期
关键词
CONTRAST-ENHANCED MRI; PROGNOSTIC VALUE; DIFFUSION; SURVIVAL; REGISTRATION; ALGORITHM; SIZE; IDENTIFICATION; BIOMARKERS; REGRESSION;
D O I
10.1593/tlo.13748
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The purpose of this study is to investigate the ability of multivariate analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) parametric maps, obtained early in the course of therapy, to predict which patients will achieve pathologic complete response (pCR) at the time of surgery. Thirty-three patients underwent DCE-MRI (to estimate K-trans, v(e), k(ep), and v(p)) and DW-MRI [to estimate the apparent diffusion coefficient (ADC)] at baseline (t(1)) and after the first cycle of neoadjuvant chemotherapy (t(2)). Four analyses were performed and evaluated using receiver-operating characteristic (ROC) analysis to test their ability to predict pCR. First, a region of interest (ROI) level analysis input the mean K-trans, v(e), k(ep), v(p), and ADC into the logistic model. Second, a voxel-based analysis was performed in which a longitudinal registration algorithm aligned serial parameters to a common space for each patient. The voxels with an increase in k(ep), K-trans, and v(p) or a decrease in ADC or v(e) were then detected and input into the regression model. In the third analysis, both the ROI and voxel level data were included in the regression model. In the fourth analysis, the ROI and voxel level data were combined with selected clinical data in the regression model. The overfitting-corrected area under the ROC curve (AUC) with 95% confidence intervals (CIs) was then calculated to evaluate the performance of the four analyses. The combination of k(ep), ADC ROI, and voxel level data achieved the best AUC (95% CI) of 0.87 (0.77-0.98).
引用
收藏
页码:14 / 22
页数:9
相关论文
共 50 条
  • [1] DW-MRI and DCE-MRI are of complementary value in predicting pathologic response to neoadjuvant chemoradiotherapy for esophageal cancer
    Heethuis, Sophie E.
    Goense, Lucas
    van Rossum, Peter S. N.
    Borggreve, Alicia S.
    Mook, Stella
    Voncken, Francine E. M.
    Bartels-Rutten, Annemarieke
    Aleman, Berthe M. P.
    van Hillegersberg, Richard
    Ruurda, Jelle P.
    Meijer, Gert J.
    Lagendijk, Jan J. W.
    van Lier, Astrid L. H. M. W.
    [J]. ACTA ONCOLOGICA, 2018, 57 (09) : 1201 - 1208
  • [2] DCE- and DW-MRI as early imaging biomarkers of treatment response in a preclinical model of triple negative breast cancer
    Barnes, Stephanie L.
    Sorace, Anna G.
    Whisenant, Jennifer G.
    McIntyre, J. Oliver
    Kang, Hakmook
    Yankeelov, Thomas E.
    [J]. NMR IN BIOMEDICINE, 2017, 30 (11)
  • [3] Parameterizing the Logistic Model of Tumor Growth by DW-MRI and DCE-MRI Data to Predict Treatment Response and Changes in Breast Cancer Cellularity during Neoadjuvant Chemotherapy
    Atuegwu, Nkiruka C.
    Arlinghaus, Lori R.
    Li, Xia
    Chakravarthy, A. Bapsi
    Abramson, Vandana G.
    Sanders, Melinda E.
    Yankeelov, Thomas E.
    [J]. TRANSLATIONAL ONCOLOGY, 2013, 6 (03): : 256 - 264
  • [4] MRI and Prediction of Pathologic Complete Response in the Breast and Axilla after Neoadjuvant Chemotherapy for Breast Cancer
    Weber, Joseph J.
    Jochelson, Maxine S.
    Eaton, Anne
    Zabor, Emily C.
    Barrio, Andrea V.
    Gemignani, Mary L.
    Pilewskie, Melissa
    Van Zee, Kimberly J.
    Morrow, Monica
    El-Tamer, Mahmoud
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2017, 225 (06) : 740 - 746
  • [5] Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients
    Fan, Ming
    Wu, Guolin
    Cheng, Hu
    Zhang, Juan
    Shao, Guoliang
    Li, Lihua
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2017, 94 : 140 - 147
  • [6] Role of DW-MRI in Predicting Pathologic Complete Response after Neoadjuvant Chemoradiation in Patients with Rectal Cancer
    Joybari, Ali Yaghobi
    Jozian, Fariba
    Alahyari, Sam
    Nasiri, Saeed
    Samsami, Majid
    Sandoughdaran, Saleh
    [J]. MIDDLE EAST JOURNAL OF CANCER, 2023, 14 (01) : 146 - 152
  • [7] Complete Breast MRI Response to Neoadjuvant Chemotherapy and Prediction of Pathologic Complete Response
    Chen, Christina A.
    Hayward, Jessica H.
    Woodard, Genevieve A.
    Ray, Kimberly M.
    Starr, Christopher J.
    Hylton, Nola M.
    Joe, Bonnie N.
    Lee, Amie Y.
    [J]. JOURNAL OF BREAST IMAGING, 2019, 1 (03) : 217 - 222
  • [8] Prediction of Treatment Response to Neoadjuvant Chemotherapy for Breast Cancer via Early Changes in Tumor Heterogeneity Captured by DCE-MRI Registration
    Jahani, Nariman
    Cohen, Eric
    Hsieh, Meng-Kang
    Weinstein, Susan P.
    Pantalone, Lauren
    Hylton, Nola
    Newitt, David
    Davatzikos, Christos
    Kontos, Despina
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [9] Prediction of Treatment Response to Neoadjuvant Chemotherapy for Breast Cancer via Early Changes in Tumor Heterogeneity Captured by DCE-MRI Registration
    Nariman Jahani
    Eric Cohen
    Meng-Kang Hsieh
    Susan P. Weinstein
    Lauren Pantalone
    Nola Hylton
    David Newitt
    Christos Davatzikos
    Despina Kontos
    [J]. Scientific Reports, 9
  • [10] The Assessment of Breast Cancer Response and the Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy; Comparison of MRI and PET
    Kim, S.
    Moon, W.
    Kang, J.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 194 (05)