Prediction of Treatment Response to Neoadjuvant Chemotherapy for Breast Cancer via Early Changes in Tumor Heterogeneity Captured by DCE-MRI Registration

被引:0
|
作者
Nariman Jahani
Eric Cohen
Meng-Kang Hsieh
Susan P. Weinstein
Lauren Pantalone
Nola Hylton
David Newitt
Christos Davatzikos
Despina Kontos
机构
[1] University of Pennsylvania,Department of Radiology, Perelman School of Medicine
[2] University of California San Francisco,Department of Radiology and Biomedical Imaging
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We analyzed DCE-MR images from 132 women with locally advanced breast cancer from the I-SPY1 trial to evaluate changes of intra-tumor heterogeneity for augmenting early prediction of pathologic complete response (pCR) and recurrence-free survival (RFS) after neoadjuvant chemotherapy (NAC). Utilizing image registration, voxel-wise changes including tumor deformations and changes in DCE-MRI kinetic features were computed to characterize heterogeneous changes within the tumor. Using five-fold cross-validation, logistic regression and Cox regression were performed to model pCR and RFS, respectively. The extracted imaging features were evaluated in augmenting established predictors, including functional tumor volume (FTV) and histopathologic and demographic factors, using the area under the curve (AUC) and the C-statistic as performance measures. The extracted voxel-wise features were also compared to analogous conventional aggregated features to evaluate the potential advantage of voxel-wise analysis. Voxel-wise features improved prediction of pCR (AUC = 0.78 (±0.03) vs 0.71 (±0.04), p < 0.05 and RFS (C-statistic = 0.76 ( ± 0.05), vs 0.63 ( ± 0.01)), p < 0.05, while models based on analogous aggregate imaging features did not show appreciable performance changes (p > 0.05). Furthermore, all selected voxel-wise features demonstrated significant association with outcome (p < 0.05). Thus, precise measures of voxel-wise changes in tumor heterogeneity extracted from registered DCE-MRI scans can improve early prediction of neoadjuvant treatment outcomes in locally advanced breast cancer.
引用
收藏
相关论文
共 50 条
  • [1] Prediction of Treatment Response to Neoadjuvant Chemotherapy for Breast Cancer via Early Changes in Tumor Heterogeneity Captured by DCE-MRI Registration
    Jahani, Nariman
    Cohen, Eric
    Hsieh, Meng-Kang
    Weinstein, Susan P.
    Pantalone, Lauren
    Hylton, Nola
    Newitt, David
    Davatzikos, Christos
    Kontos, Despina
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [2] Quantification of Tumor Changes during Neoadjuvant Chemotherapy with Longitudinal Breast DCE-MRI Registration
    Wu, Jia
    Ou, Yangming
    Weinstein, Susan P.
    Conant, Emily F.
    Yu, Ning
    Hoshmand, Vahid
    Keller, Brad
    Ashraf, Ahmed B.
    Rosen, Mark
    DeMichele, Angela
    Davatzikos, Christos
    Kontos, Despina
    [J]. MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [3] Early Prediction and Evaluation of Breast Cancer Response to Neoadjuvant Chemotherapy Using Quantitative DCE-MRI
    Tudorica, Alina
    Oh, Karen Y.
    Chui, Stephen Y-C
    Roy, Nicole
    Troxell, Megan L.
    Naik, Arpana
    Kemmer, Kathleen A.
    Chen, Yiyi
    Holtorf, Megan L.
    Afzal, Aneela
    Springer, Charles S., Jr.
    Li, Xin
    Huang, Wei
    [J]. TRANSLATIONAL ONCOLOGY, 2016, 9 (01): : 8 - 17
  • [4] Ultrafast DCE-MRI as a new tool for treatment response prediction in neoadjuvant chemotherapy of breast cancer
    Kataoka, Masako
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (12) : 565 - 566
  • [5] An approach to the prediction of breast cancer response to neoadjuvant chemotherapy based on tumor habitats in DCE-MRI images
    Carvalho, Edson Damasceno
    da Silva Neto, Otilio Paulo
    Mathew, Mano Joseph
    de Carvalho Filho, Antonio Oseas
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 234
  • [6] Breast DCE-MRI Kinetic Heterogeneity Tumor Markers: Preliminary Associations With Neoadjuvant Chemotherapy Response
    Ashraf, Ahmed
    Gaonkar, Bilwaj
    Mies, Carolyn
    DeMichele, Angela
    Rosen, Mark
    Davatzikos, Christos
    Kontos, Despina
    [J]. TRANSLATIONAL ONCOLOGY, 2015, 8 (03): : 154 - 162
  • [7] Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients
    Fan, Ming
    Wu, Guolin
    Cheng, Hu
    Zhang, Juan
    Shao, Guoliang
    Li, Lihua
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2017, 94 : 140 - 147
  • [8] Habitat Analysis of DCE-MRI Predicts for Response to Neoadjuvant Chemotherapy in Breast Cancer
    Silver, Benjamin
    Obeid, Jean-Pierre
    Chan, Yu-Cherng C.
    Takita, Cristiane
    Stoyanova, Radka
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 101 (02): : E12 - E13
  • [9] Analysis of DCE-MRI for Early Prediction of Breast Cancer Therapy Response
    Machireddy, Archana
    Thibault, Guillaume
    Huang, Wei
    Song, Xubo
    [J]. 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 682 - 685
  • [10] Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer
    Xinhong Liang
    Xiaofeng Chen
    Zhiqi Yang
    Yuting Liao
    Mengzhu Wang
    Yulin Li
    Weixiong Fan
    Zhuozhi Dai
    Yunuo Zhang
    [J]. BMC Cancer, 22