Topology optimization of compliant structures and mechanisms using constructive solid geometry for 2-d and 3-d applications

被引:12
|
作者
Pandey, Anmol [1 ]
Datta, Rituparna [1 ]
Bhattacharya, Bishakh [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Mech Engn, Kanpur, Uttar Pradesh, India
关键词
Structural and topology optimization; Finite element analysis (FEA); Multi-objective genetic algorithms; Compliant structures; DESIGN; ALGORITHMS;
D O I
10.1007/s00500-015-1845-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research focuses on the establishment of a constructive solid geometry-based topology optimization (CSG-TOM) technique for the design of compliant structure and mechanism. The novelty of the method lies in handling voids, non-design constraints, and irregular boundary shapes of the design domain, which are critical for any structural optimization. One of the most popular models of multi-objective genetic algorithm, non-dominated sorting genetic algorithm is used as the optimization tool due to its ample applicability in a wide variety of problems and flexibility in providing non-dominated solutions. The CSG-TOM technique has been successfully applied for 2-D topology optimization of compliant mechanisms and subsequently extended to 3-D cases. For handling these cases, a new software framework involving optimization routine for geometry and mesh generation with FEA solver has been developed. The efficacy of the approach has been demonstrated for 2-D and 3-D geometries and also compared with state of the art techniques.
引用
收藏
页码:1157 / 1179
页数:23
相关论文
共 50 条
  • [31] A Galerkin Method for the Simulation of the Transient 2-D/2-D and 3-D/3-D Linear Boltzmann Equation
    Matthias K. Gobbert
    Samuel G. Webster
    Timothy S. Cale
    Journal of Scientific Computing, 2007, 30 : 237 - 273
  • [32] A Galerkin method for the simulation of the transient 2-D/2-D and 3-D/3-D linear Boltzmann equation
    Gobbert, Matthias K.
    Webster, Samuel G.
    Cale, Timothy S.
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 30 (02) : 237 - 273
  • [33] Curvature of oriented patterns: 2-D and 3-D estimation from differential geometry
    Donias, M
    Baylou, P
    Keskes, N
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 1, 1998, : 236 - 240
  • [34] VORTICES IN 2-D AND 3-D SUPERFLUIDS
    BOWLEY, RM
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1992, 87 (3-4) : 137 - 196
  • [35] 2-D approaches to a 3-D problem
    Lamb, RG
    HYDROCARBON PROCESSING, 1998, 77 (04): : 175 - 175
  • [36] Polyelectrolytes of 2-D and 3-D polyphenylenes
    Mihov, G
    Bauer, RE
    Tchebotareva, N
    Knoll, W
    Schmidt, M
    Thünemann, AF
    Müllen, K
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U476 - U476
  • [37] 3-D to 2-D recognition with regions
    Jacobs, DW
    Basri, R
    1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, : 547 - 553
  • [38] 2-D and 3-D endoluminal ultrasound
    Liu, JB
    Goldberg, BB
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2000, 26 : S137 - S139
  • [39] 3-D SINGLETONS AND 2-D CFT
    ARRASHID, AMH
    FRONSDAL, C
    FLATO, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (10): : 2193 - 2206
  • [40] 2-D/3-D switchable displays
    Willemsen, O. H.
    De Zwart, S. T.
    Hiddink, M. G. H.
    Willemsen, Oscar
    JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, 2006, 14 (08) : 715 - 722