Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas

被引:118
|
作者
Bailey, J. E. [1 ]
Rochau, G. A. [1 ]
Mancini, R. C. [2 ]
Iglesias, C. A. [3 ]
MacFarlane, J. J. [4 ]
Golovkin, I. E. [4 ]
Blancard, C. [5 ]
Cosse, Ph. [5 ]
Faussurier, G. [5 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Univ Nevada, Reno, NV 89557 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Prism Computat Sci, Madison, WI 53703 USA
[5] DIF, DAM, CEA, F-91297 Arpajon, France
关键词
opacity; plasma inertial confinement; plasma light propagation; plasma transport processes; stellar internal processes; Z pinch; X-RAY RESPONSE; ABSORPTION-SPECTROSCOPY; RADIATIVE ACCELERATIONS; SOLAR ABUNDANCES; CONSTRAINED SAMPLES; PHOTOGRAPHIC FILMS; THIN FOILS; Z PINCHES; HELIOSEISMOLOGY; ALUMINUM;
D O I
10.1063/1.3089604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150-300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation of high energy density (HED) facilities. For example, recent experiments at Sandia's Z facility [M. K. Matzen , Phys. Plasmas 12, 055503 (2005)] measured the transmission of a mixed Mg and Fe plasma heated to 156 +/- 6 eV. This capability will also advance opacity science for other HED plasmas. This tutorial reviews experimental methods for testing opacity models, including experiment design, transmission measurement methods, accuracy evaluation, and plasma diagnostics. The solar interior serves as a focal problem and Z facility experiments illustrate the techniques.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] An experimental investigation of density-stratified inertial gravity currents
    Gladstone, C
    Ritchie, LJ
    Sparks, RSJ
    Woods, AW
    SEDIMENTOLOGY, 2004, 51 (04) : 767 - 789
  • [22] Petascale particle-in-cell simulations of kinetic effects in inertial fusion energy plasmas
    Wen, H.
    Tsung, F. S.
    Mori, W. B.
    Fonseca, R. A.
    Silva, L. O.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (04)
  • [23] A massive-ion beam driver for high-energy-density physics and future inertial fusion
    Takayama, Ken
    Adachi, Toshikazu
    Kawakubo, Tadamichi
    Okamura, Katsuya
    Yuri, Yosuke
    Hasegawa, Jun
    Horioka, Kazuhiko
    Kikuchi, Takashi
    Sasaki, Toru
    Takahashi, Kazumasa
    PHYSICS LETTERS A, 2020, 384 (27)
  • [24] Repetitively pulsed, high energy KrF lasers for inertial fusion energy
    Myers, MC
    Sethian, JD
    Giuliani, JL
    Lehmberg, R
    Kepple, P
    Wolford, MF
    Hegeler, F
    Friedman, M
    Jones, TC
    Swanekamp, SB
    Weidenheimer, D
    Rose, D
    NUCLEAR FUSION, 2004, 44 (12) : S247 - S253
  • [25] Opportunities for Inertial Fusion and High-Energy-Density Physics Research at the National Laser Users' Facility
    Soures, J. M.
    HIGH POWER LASERS FOR FUSION RESEARCH, 2011, 7916
  • [26] Activities on heavy ion inertial fusion and beam-driven high energy density science in Japan
    Horioka, K.
    Kawamura, T.
    Nakajima, M.
    Kondo, K.
    Ogawa, M.
    Oguri, Y.
    Hasegawa, J.
    Kawata, S.
    Kikuchi, T.
    Sasaki, T.
    Murakami, M.
    Takayama, K.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 606 (1-2): : 1 - 5
  • [27] Target technology development for the research of high energy density physics and inertial fusion at the RFNC-VNIIEF
    Izgorodin, V. M.
    Abzaev, F. M.
    Balyaev, A. P.
    Bessarab, A. V.
    Cherkesova, I. N.
    Chulkov, V. U.
    Fenoshin, D. Yu.
    Garanin, S. G.
    Gogolev, V. G.
    Golubinsky, A. G.
    Ignat'ev, Yu. V.
    Irinichev, D. A.
    Lachtikov, A. E.
    Morovov, A. P.
    Nazarov, V. V.
    Nikolaev, G. P.
    Pepelyaev, A. P.
    Pinegin, A. V.
    Rojz, I. M.
    Romaev, V. N.
    Solomatina, E. Yu.
    Vasin, M. G.
    Veselov, A. V.
    LASER AND PARTICLE BEAMS, 2009, 27 (04) : 657 - 680
  • [28] On the investigation of spark formation conditions and energy gain in inertial confinement fusion
    Ghasemizad, A
    Eskandari, MR
    Khoshbinfar, S
    Kamran, M
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2005, 29 (A3): : 421 - 431
  • [29] Experimental investigation of the tilt angle of turbulent structures in the core of fusion plasmas
    Pinzon, J. R.
    Happel, T.
    Hennequin, P.
    Angioni, C.
    Estrada, T.
    Lebschy, A.
    Stroth, U.
    NUCLEAR FUSION, 2019, 59 (07)
  • [30] Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas
    Hill, K. W.
    Bitter, M.
    Delgado-Aparacio, L.
    Pablant, N. A.
    Beiersdorfer, P.
    Schneider, M.
    Widmann, K.
    del Rio, M. Sanchez
    Zhang, L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10):