Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas

被引:118
|
作者
Bailey, J. E. [1 ]
Rochau, G. A. [1 ]
Mancini, R. C. [2 ]
Iglesias, C. A. [3 ]
MacFarlane, J. J. [4 ]
Golovkin, I. E. [4 ]
Blancard, C. [5 ]
Cosse, Ph. [5 ]
Faussurier, G. [5 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Univ Nevada, Reno, NV 89557 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Prism Computat Sci, Madison, WI 53703 USA
[5] DIF, DAM, CEA, F-91297 Arpajon, France
关键词
opacity; plasma inertial confinement; plasma light propagation; plasma transport processes; stellar internal processes; Z pinch; X-RAY RESPONSE; ABSORPTION-SPECTROSCOPY; RADIATIVE ACCELERATIONS; SOLAR ABUNDANCES; CONSTRAINED SAMPLES; PHOTOGRAPHIC FILMS; THIN FOILS; Z PINCHES; HELIOSEISMOLOGY; ALUMINUM;
D O I
10.1063/1.3089604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150-300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation of high energy density (HED) facilities. For example, recent experiments at Sandia's Z facility [M. K. Matzen , Phys. Plasmas 12, 055503 (2005)] measured the transmission of a mixed Mg and Fe plasma heated to 156 +/- 6 eV. This capability will also advance opacity science for other HED plasmas. This tutorial reviews experimental methods for testing opacity models, including experiment design, transmission measurement methods, accuracy evaluation, and plasma diagnostics. The solar interior serves as a focal problem and Z facility experiments illustrate the techniques.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Opacity profiles in inertial confinement fusion plasmas
    Benredjem, D.
    Pain, J. C.
    Gilleron, F.
    Ferri, S.
    Calisti, A.
    XXII INTERNATIONAL CONFERENCE ON SPECTRAL LINE SHAPES (ICSLS 2014), 2014, 548
  • [2] X-RAY SPECTROSCOPY OF HIGH-ENERGY DENSITY INERTIAL CONFINEMENT FUSION PLASMAS
    KEANE, CJ
    HAMMEL, BA
    KANIA, DR
    KILKENNY, JD
    LEE, RW
    OSTERHELD, AL
    SUTER, LJ
    MANCINI, RC
    HOOPER, CF
    DELAMATER, ND
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (09): : 3328 - 3336
  • [3] High energy density simulations for inertial fusion energy reactor design
    Moses, GA
    Santarius, JF
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (04) : 1121 - 1125
  • [4] An investigation of the opacity of high-Z mixture and implications for inertial confinement fusion hohlraum design
    Wang, P
    MacFarlane, JJ
    Orzechowski, TJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (01): : 1107 - 1110
  • [6] The NIF: an International High Energy Density and Inertial Fusion User Facility
    Moses, E. I.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [7] Experimental Investigation of Iron Plasma Opacity Models
    Bailey, J. E.
    Rochau, G. A.
    Hansen, S. B.
    Nash, T. J.
    Nielsen, D. S.
    Lake, P. W.
    Iglesias, C. A.
    Mancini, R. C.
    MacFarlane, J. J.
    Golovkin, I.
    Wang, P.
    Blancard, C.
    Cosse, Ph.
    Faussurier, G.
    Gilleron, F.
    Pain, J. C.
    Abdallah, J., Jr.
    Pradhan, A. K.
    Nahar, S. N.
    ATOMIC PROCESSES IN PLASMAS, 2009, 1161 : 40 - 40
  • [8] Theoretical models of hot dense plasmas for inertial confinement fusion
    Orlov, NY
    LASER AND PARTICLE BEAMS, 2002, 20 (04) : 547 - 549
  • [9] Preparation of the high power laser system PETAL for experimental studies of inertial confinement fusion and high energy density states of matter
    d'Humieres, E.
    Caron, J.
    Perego, C.
    Raffestin, D.
    Dubois, J. -L.
    Baggio, J.
    La Fontaine, A. Compant
    Hulin, S.
    Ducret, J. -E.
    Lubrano, F.
    Gomme, J. C.
    Gazave, J.
    Ribolzi, J.
    Feugeas, J. -L.
    Nicolai, P.
    Lefebvre, E.
    Tikhonchuk, V. T.
    Batani, D.
    8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013), 2016, 688
  • [10] The NIF: An international high energy density science and inertial fusion user facility
    Moses, E. I.
    Storm, E.
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59