Quantum Annealing Error Mitigation Using Mirror Symmetries on Different Generations of Quantum Annealers

被引:0
|
作者
Bhalgamiya, Bhavika [1 ]
Perera, Dilina [2 ]
Novotny, M. A. [3 ]
机构
[1] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA
[2] Univ Colombo, Dept Phys, Colombo 03, Sri Lanka
[3] Mississippi State Univ, Ctr Computat Sci HPC2, Mississippi State, MS 39762 USA
关键词
Quantum annealing error mitigation; D-Wave quantum annealers; Mirror symmetric properties; Quadratic Unconstrained Binary Optimization (QUBO);
D O I
10.1109/QCE53715.2022.00140
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an effective method of error mitigation on adiabatic quantum annealing machines. This method involves a mirror symmetric property of the adiabatic quantum device underlying graph. The methodology is tested on different generations of D-Wave annealing devices. An initial Hamiltonian is formed with two mirror- symmetric graphs k = k', coupled with either ferromagnetic (M > 0) or antiferromagnetic (M < 0) graph edges, and then implemented on the underlying D-Wave Chimera graph. Examining the returned solution states at the end of annealing process, allows one to discard returned states that are not the ground state of the problem Hamiltonian. The approach is applicable to any quantum adiabatic device. We used the method to compare the performances of different generations of adiabatic devices.
引用
收藏
页码:844 / 846
页数:3
相关论文
共 50 条
  • [21] Enhancing quantum annealing accuracy through replication-based error mitigation
    Djidjev, Hristo N.
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (04):
  • [22] DEGENERACIES AND MIRROR SYMMETRIES IN POLYGONAL QUANTUM BILLIARDS
    LAUBER, HM
    FUNDAMENTAL PROBLEMS IN QUANTUM THEORY: A CONFERENCE HELD IN HONOR OF PROFESSOR JOHN A. WHEELER, 1995, 755 : 318 - 329
  • [23] Boosting the performance of quantum annealers using machine learning
    Brence, Jure
    Mihailovic, Dragan
    Kabanov, Viktor V.
    Todorovski, Ljupco
    Dzeroski, Saso
    Vodeb, Jaka
    QUANTUM MACHINE INTELLIGENCE, 2023, 5 (01)
  • [24] Error mitigation for quantum approximate optimization
    Weidinger, Anita
    Mbeng, Glen Bigan
    Lechner, Wolfgang
    PHYSICAL REVIEW A, 2023, 108 (03)
  • [25] General error mitigation for quantum circuits
    Jattana, Manpreet Singh
    Jin, Fengping
    De Raedt, Hans
    Michielsen, Kristel
    QUANTUM INFORMATION PROCESSING, 2020, 19 (11)
  • [26] Boosting the performance of quantum annealers using machine learning
    Jure Brence
    Dragan Mihailović
    Viktor V. Kabanov
    Ljupčo Todorovski
    Sašo Džeroski
    Jaka Vodeb
    Quantum Machine Intelligence, 2023, 5
  • [27] Quantum error mitigation for parametric circuits
    Sazonov, Vasily
    Tamaazousti, Mohamed
    PHYSICAL REVIEW A, 2022, 105 (04)
  • [28] General error mitigation for quantum circuits
    Manpreet Singh Jattana
    Fengping Jin
    Hans De Raedt
    Kristel Michielsen
    Quantum Information Processing, 2020, 19
  • [29] Quantum Error Mitigation and Its Progress
    Endo S.
    NTT Technical Review, 2023, 21 (11): : 35 - 42
  • [30] Virtual Distillation for Quantum Error Mitigation
    Huggins, William J.
    McArdle, Sam
    O'Brien, Thomas E.
    Lee, Joonho
    Rubin, Nicholas C.
    Boixo, Sergio
    Whaley, K. Birgitta
    Babbush, Ryan
    McClean, Jarrod R.
    PHYSICAL REVIEW X, 2021, 11 (04)