Heating rates and ion-motion control in a Y-junction surface-electrode trap

被引:43
|
作者
Shu, G. [1 ,2 ,3 ]
Vittorini, G. [1 ,2 ,3 ]
Buikema, A. [4 ]
Nichols, C. S. [1 ,2 ,3 ]
Volin, C. [5 ]
Stick, D. [6 ]
Brown, Kenneth R. [1 ,2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[4] Haverford Coll, Dept Phys, Haverford, PA 19041 USA
[5] Georgia Tech Res Inst, Atlanta, GA 30332 USA
[6] Sandia Natl Labs, Albuquerque, NM 87185 USA
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 06期
基金
美国国家科学基金会;
关键词
ARCHITECTURE;
D O I
10.1103/PhysRevA.89.062308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We measure ion heating following transport throughout a Y-junction surface-electrode ion trap. By carefully selecting the trap voltage update rate during adiabatic transport along a trap arm, we observe minimal heating relative to the anomalous heating background. Transport through the junction results in an induced heating between 37 and 150 quanta in the axial direction per traverse. To reliably measure heating in this range, we compare the experimental sideband envelope, including up to fourth-order sidebands, to a theoretical model. The sideband envelope method allows us to cover the intermediate heating range inaccessible to the first-order sideband and Doppler recooling methods. We conclude that quantum information processing in this ion trap will likely require sympathetic cooling in order to support high fidelity gates after junction transport.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap
    D. P. L. Aude Craik
    N. M. Linke
    T. P. Harty
    C. J. Ballance
    D. M. Lucas
    A. M. Steane
    D. T. C. Allcock
    Applied Physics B, 2014, 114 : 3 - 10
  • [42] Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap
    Craik, D. P. L. Aude
    Linke, N. M.
    Harty, T. P.
    Ballance, C. J.
    Lucas, D. M.
    Steane, A. M.
    Allcock, D. T. C.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2014, 114 (1-2): : 3 - 10
  • [43] Distance scaling of electric-field noise in a surface-electrode ion trap
    Sedlacek, J. A.
    Greene, A.
    Stuart, J.
    McConnell, R.
    Bruzewicz, C. D.
    Sage, J. M.
    Chiaverini, J.
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [44] Surface-electrode Paul trap with optimized near-field microwave control
    Carsjens, M.
    Kohnen, M.
    Dubielzig, T.
    Ospelkaus, C.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2014, 114 (1-2): : 243 - 250
  • [45] Surface-electrode Paul trap with optimized near-field microwave control
    M. Carsjens
    M. Kohnen
    T. Dubielzig
    C. Ospelkaus
    Applied Physics B, 2014, 114 : 243 - 250
  • [46] Surface-electrode ion trap design for near-field microwave quantum gates
    James E. Tarlton
    Richard C. Thompson
    David M. Lucas
    Applied Physics B, 2023, 129
  • [47] Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap
    Wang, Shannon X.
    Labaziewicz, Jaroslaw
    Ge, Yufei
    Shewmon, Ruth
    Chuang, Isaac L.
    APPLIED PHYSICS LETTERS, 2009, 94 (09)
  • [48] Surface-Electrode Ion Trap With Ground Structures for Minimizing the Dielectric Loss in the Si Substrate
    Tao, Jing
    Li, Hong Yu
    Lim, Yu Dian
    Zhao, Peng
    Apriyana, Anak Agung
    Guidoni, Luca
    Tan, Chuan Seng
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2020, 10 (04): : 679 - 685
  • [49] Optimised surface-electrode ion-trap junctions for experiments with cold molecular ions
    Mokhberi, A.
    Schmied, R.
    Willitsch, S.
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [50] Surface-electrode ion trap design for near-field microwave quantum gates
    Tarlton, James E.
    Thompson, Richard C.
    Lucas, David M.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2023, 129 (06):