Effective medium equation for fractional Cattaneo's diffusion and heterogeneous reaction in disordered porous media

被引:31
|
作者
Valdes-Parada, Francisco J. [1 ]
Ochoa-Tapia, Alberto [1 ]
Alvarez-Ramirez, Jose [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Ingn Proc & Hidraul, Mexico City 09340, DF, Mexico
关键词
reaction-diffusion; porous media; effective medium equations; pseudo-homogeneous equations;
D O I
10.1016/j.physa.2006.02.030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper focuses on the reaction-diffusion problem in a disordered porous medium. The objective is to obtain an effective medium description of the concentration dynamics having a fractional Cattaneo's law equation as the flux constitutive equation. The methodology is based on a volume averaging procedure, and simplifications are made on the basis of an order of magnitude analysis with physical grounds. Sufficient conditions to obtain pseudo-homogeneous models are given. The closure problem associated with the effective diffusivity definition results to be the same that the one corresponding to Fickian diffusion. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:318 / 328
页数:11
相关论文
共 50 条
  • [21] A spectral approach for homogenization of diffusion and heterogeneous reaction in porous media
    Le, Tien Dung
    Moyne, Christian
    Bourbatache, Khaled
    Millet, Olivier
    APPLIED MATHEMATICAL MODELLING, 2022, 104 : 666 - 681
  • [22] Effective parameters for biogeochemical reaction rates in heterogeneous porous media
    Ke, Dongfang
    Li, Rong
    Liu, Chongxuan
    JOURNAL OF HYDROLOGY, 2023, 621
  • [23] Fractional Cattaneo heat equation in a semi-infinite medium
    续焕英
    齐海涛
    蒋晓芸
    Chinese Physics B, 2013, 22 (01) : 338 - 343
  • [24] Fractional Cattaneo heat equation in a semi-infinite medium
    Xu Huan-Ying
    Qi Hai-Tao
    Jiang Xiao-Yun
    CHINESE PHYSICS B, 2013, 22 (01)
  • [25] Solutions of the space-time fractional Cattaneo diffusion equation
    Qi, Haitao
    Jiang, Xiaoyun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (11) : 1876 - 1883
  • [26] Solutions of the Fractional Reaction Equation and the Fractional Diffusion Equation
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    PROCEEDINGS OF THE THIRD UN/ESA/NASA WORKSHOP ON THE INTERNATIONAL HELIOPHYSICAL YEAR 2007 AND BASIC SPACE SCIENCE: NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN, 2010, : 53 - 62
  • [27] Diffusion equation for disordered fractal media
    Zeng, QH
    Li, HQ
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2000, 8 (01) : 117 - 121
  • [28] On a fractional reaction–diffusion equation
    Bruno de Andrade
    Arlúcio Viana
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [29] A General Fractional Porous Medium Equation
    de Pablo, Arturo
    Quiros, Fernando
    Rodriguez, Ana
    Luis Vazquez, Juan
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (09) : 1242 - 1284
  • [30] Effective Medium Theory for Reaction Rates and Diffusion Coefficients of Heterogeneous Systems
    Alonso, Sergio
    Kapral, Raymond
    Baer, Markus
    PHYSICAL REVIEW LETTERS, 2009, 102 (23)