HiPR: High-throughput probabilistic RNA structure inference

被引:0
|
作者
Kuksa, Pavel P. [1 ]
Li, Fan [4 ]
Kannan, Sampath [2 ]
Gregory, Brian D. [3 ]
Leung, Yuk Yee [1 ]
Wang, Li-San [1 ,2 ]
机构
[1] Univ Penn, Penn Neurodegenerat Genom Ctr, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[4] Childrens Hosp Los Angeles, Los Angeles, CA 90027 USA
关键词
High-throughput structure-sensitive sequencing; RNA structure inference; Probabilistic modeling; DMS-seq; DMS-MaPseq; SELECTIVE 2'-HYDROXYL ACYLATION; SECONDARY STRUCTURE PREDICTION; PRIMER EXTENSION; IN-VIVO; SHAPE-MAP; CONSTRAINTS; BINDING;
D O I
10.1016/j.csbj.2020.06.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent high-throughput structure-sensitive genome-wide sequencing-based assays have enabled large-scale studies of RNA structure, and robust transcriptome-wide computational prediction of individual RNA structures across RNA classes from these assays has potential to further improve the prediction accuracy. Here, we describe HiPR, a novel method for RNA structure prediction at single-nucleotide resolution that combines high-throughput structure probing data (DMS-seq, DMS-MaPseq) with a novel probabilistic folding algorithm. On validation data spanning a variety of RNA classes, HiPR often increases accuracy for predicting RNA structures, giving researchers new tools to study RNA structure. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:1539 / 1547
页数:9
相关论文
共 50 条
  • [41] Functional genomics using high-throughput RNA interference
    Vanhecke, D
    Janitz, M
    DRUG DISCOVERY TODAY, 2005, 10 (03) : 205 - 212
  • [42] High-throughput detection of west Nile virus RNA
    Shi, PY
    Kauffman, EB
    Ren, P
    Felton, A
    Tai, JH
    Dupuis, AP
    Jones, SA
    Ngo, KA
    Nicholas, DC
    Maffei, J
    Ebel, GD
    Bernard, KA
    Kramer, LD
    JOURNAL OF CLINICAL MICROBIOLOGY, 2001, 39 (04) : 1264 - 1271
  • [43] Profiling of Ribose Methylations in RNA by High-Throughput Sequencing
    Birkedal, Ulf
    Christensen-Dalsgaard, Mikkel
    Krogh, Nicolai
    Sabarinathan, Radhakrishnan
    Gorodkin, Jan
    Nielsen, Henrik
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (02) : 451 - 455
  • [44] RNAex: an RNA secondary structure prediction server enhanced by high-throughput structure-probing data
    Wu, Yang
    Qu, Rihao
    Huang, Yiming
    Shi, Binbin
    Liu, Mengrong
    Li, Yang
    Lu, Zhi John
    NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) : W294 - W301
  • [45] High-throughput single-cell RNA sequencing
    Denyer, Tom
    Timmermans, Marja C. P.
    TRENDS IN PLANT SCIENCE, 2022, 27 (01) : 104 - 105
  • [46] T he RNA structurome: high-throughput probing
    Westhof, Eric
    Romby, Pascale
    NATURE METHODS, 2010, 7 (12) : 965 - 967
  • [47] High-throughput characterization of protein-RNA interactions
    Cook, Kate B.
    Hughes, Timothy R.
    Morris, Quaid D.
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2015, 14 (01) : 74 - 89
  • [48] High-throughput RNA extraction and purification for citrus diagnostics
    Huang, Amy
    Ramirez, Brandon
    Nguyen, Brittany
    Varady, Erika
    Bae, Jinhwan
    Voeltz, Michael
    Siddiqui, Noora
    Hammado, Sarah
    Abdulnour, Silva
    Tan, Shi-hua
    Dang, Tyler
    Bodaghi, Sohrab
    Osman, Fatima
    Pagliaccia, Deborah
    Vidalakis, Georgios
    PHYTOPATHOLOGY, 2017, 107 (12) : 187 - 187
  • [49] Molecular replacement and high-throughput structure determination
    Navaza, J
    Alzari, PM
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2002, 217 (12): : 715 - 721
  • [50] Inference on missing values in genetic networks using high-throughput data
    Koukolikova-Nicola, Zdena
    Lio, Pietro
    Bagnoli, Franco
    EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, PROCEEDINGS, 2008, 4973 : 106 - +