HiPR: High-throughput probabilistic RNA structure inference

被引:0
|
作者
Kuksa, Pavel P. [1 ]
Li, Fan [4 ]
Kannan, Sampath [2 ]
Gregory, Brian D. [3 ]
Leung, Yuk Yee [1 ]
Wang, Li-San [1 ,2 ]
机构
[1] Univ Penn, Penn Neurodegenerat Genom Ctr, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[4] Childrens Hosp Los Angeles, Los Angeles, CA 90027 USA
关键词
High-throughput structure-sensitive sequencing; RNA structure inference; Probabilistic modeling; DMS-seq; DMS-MaPseq; SELECTIVE 2'-HYDROXYL ACYLATION; SECONDARY STRUCTURE PREDICTION; PRIMER EXTENSION; IN-VIVO; SHAPE-MAP; CONSTRAINTS; BINDING;
D O I
10.1016/j.csbj.2020.06.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent high-throughput structure-sensitive genome-wide sequencing-based assays have enabled large-scale studies of RNA structure, and robust transcriptome-wide computational prediction of individual RNA structures across RNA classes from these assays has potential to further improve the prediction accuracy. Here, we describe HiPR, a novel method for RNA structure prediction at single-nucleotide resolution that combines high-throughput structure probing data (DMS-seq, DMS-MaPseq) with a novel probabilistic folding algorithm. On validation data spanning a variety of RNA classes, HiPR often increases accuracy for predicting RNA structures, giving researchers new tools to study RNA structure. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:1539 / 1547
页数:9
相关论文
共 50 条
  • [1] A robust peak detection method for RNA structure inference by high-throughput contact mapping
    Kim, Jinkyu
    Yu, Seunghak
    Shim, Byonghyo
    Kim, Hanjoo
    Min, Hyeyoung
    Chung, Eui-Young
    Das, Rhiju
    Yoon, Sungroh
    BIOINFORMATICS, 2009, 25 (09) : 1137 - 1144
  • [2] A high-throughput approach to profile RNA structure
    Delli Ponti, Riccardo
    Marti, Stefanie
    Armaos, Alexandros
    Gaetano Tartaglia, Gian
    NUCLEIC ACIDS RESEARCH, 2017, 45 (05)
  • [3] High-throughput determination of RNA structure by proximity ligation
    Ramani, Vijay
    Qiu, Ruolan
    Shendure, Jay
    NATURE BIOTECHNOLOGY, 2015, 33 (09) : 980 - U236
  • [4] High-throughput determination of RNA structure by proximity ligation
    Vijay Ramani
    Ruolan Qiu
    Jay Shendure
    Nature Biotechnology, 2015, 33 : 980 - 984
  • [5] High-Throughput Analysis of RNA Structure by SHAPE Chemistry
    Weeks, Kevin
    Watts, Joseph
    Wilkinson, Kevin
    Gorelick, Robert
    FASEB JOURNAL, 2009, 23
  • [6] High-Throughput DNN Inference with LogicNets
    Umuroglu, Yaman
    Akhauri, Yash
    Fraser, Nicholas J.
    Blott, Michaela
    28TH IEEE INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2020, : 238 - 238
  • [7] Structural inference of native and partially folded RNA by high-throughput contact mapping
    Dast, Rhiju
    Kudaravalli, Madhuri
    Jonikas, Magdalena
    Laederach, Alain
    Fong, Robert
    Schwans, Jason P.
    Baker, David
    Piccirilli, Joseph A.
    Altman, Russ B.
    Herschlag, Daniel
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (11) : 4144 - 4149
  • [8] Constructing Accurate Contact Maps for Hydroxyl-Radical-Cleavage-Based High-Throughput RNA Structure Inference
    Kim, Jinkyu
    Kim, Hanjoo
    Min, Hyeyoung
    Yoon, Sungroh
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (05) : 1347 - 1355
  • [9] RNA Secondary Structure Prediction Using High-throughput SHAPE
    Lusvarghi, Sabrina
    Sztuba-Solinska, Joanna
    Purzycka, Katarzyna J.
    Rausch, Jason W.
    Le Grice, Stuart F. J.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (75):
  • [10] High-throughput determination of RNA structures
    Strobel, Eric J.
    Yu, Angela M.
    Lucks, Julius B.
    NATURE REVIEWS GENETICS, 2018, 19 (10) : 615 - 634