Development of the Rayleigh-Taylor Instability. Results of Numerical Simulation at Low Reynolds Numbers

被引:1
|
作者
Borisov, S. P. [1 ]
Kudryavtsev, A. N. [1 ,2 ]
机构
[1] Khristianovich Inst Theoret & Appl Mech SB RAS, Inst Skaya Str 4-1, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1063/5.0028747
中图分类号
O59 [应用物理学];
学科分类号
摘要
The development of the Rayleigh-Taylor instability is studied by solving numerically two-dimensional Navier-Stokes equations for a viscous compressible gas in a uniform field of an external body force. The main attention is paid to the change in the flow pattern with an increase in the Knudsen number (and, accordingly, a decrease in the inversely proportional Reynolds number) and the increasing influence of the effects of viscosity and flow rarefaction. It is determined at what value of the Knudsen number the development of secondary Kelvin-Helmholtz instability is suppressed. Usually the Kelvin-Helmholtz instability plays the main role in the emergence of small-scale pulsations and the transition to turbulence. The dependence of the growth rate of the spike formed by the heavier gas on the flow rarefaction is studied.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] On the long time simulation of the Rayleigh-Taylor instability
    Lee, Hyun Geun
    Kim, Kyoungmin
    Kim, Junseok
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 85 (13) : 1633 - 1647
  • [32] RAYLEIGH-TAYLOR INSTABILITY
    PLESSET, MS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1095 - 1095
  • [33] RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (03): : 551 - 554
  • [34] The Rayleigh-Taylor instability
    Piriz, A. R.
    Cortazar, O. D.
    Lopez Cela, J. J.
    Tahir, N. A.
    AMERICAN JOURNAL OF PHYSICS, 2006, 74 (12) : 1095 - 1098
  • [35] A numerical study of Rayleigh-Taylor instability for various Atwood numbers using ISPH method
    Rahmat, Amin
    Tofighi, Nima
    Yildiz, Mehmet
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2018, 18 (05): : 267 - 276
  • [36] Development of Rayleigh-Taylor instability in compressible media
    Zajtsev, S.G.
    Krivets, V.V.
    Titov, S.N.
    Chebotareva, E.I.
    Izvestiya Akademii Nauk. Mekhanika Zhidkosti I Gaza, 1600, (03): : 16 - 26
  • [37] NUMERICAL-SIMULATION OF RAYLEIGH-TAYLOR INSTABILITY FOR SINGLE AND MULTIPLE SALT DIAPIRS
    ZALESKI, S
    JULIEN, P
    TECTONOPHYSICS, 1992, 206 (1-2) : 55 - 69
  • [38] The evolution model of the rayleigh-taylor instability development
    Kuchugov, P.
    Zmitrenko, N.
    Rozanov, V.
    Yanilkin, Yu.
    Sin'kova, O.
    Statsenko, V.
    Chernyshova, O.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2012, 33 (06) : 517 - 530
  • [39] The evolution model of the rayleigh-taylor instability development
    P. Kuchugov
    N. Zmitrenko
    V. Rozanov
    Yu. Yanilkin
    O. Sin’kova
    V. Statsenko
    O. Chernyshova
    Journal of Russian Laser Research, 2012, 33 : 517 - 530
  • [40] Numerical analysis of the Rayleigh-Taylor instability in an electric field
    Yang, Qingzhen
    Li, Ben Q.
    Zhao, Zhengtuo
    Shao, Jinyou
    Xu, Feng
    JOURNAL OF FLUID MECHANICS, 2016, 792 : 397 - 434