DNN-assisted statistical analysis of a model of local cortical circuits

被引:6
|
作者
Zhang, Yaoyu [1 ]
Young, Lai-Sang [2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Inst Nat Sci, MOE LSC & Qing Yuan Res Inst, Shanghai 200240, Peoples R China
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[3] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
INHIBITORY STABILIZATION; ORIENTATION SELECTIVITY; VISUAL-CORTEX; NETWORK; V1; NEURONS; OSCILLATIONS; INTEGRATION; MODULATION;
D O I
10.1038/s41598-020-76770-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In neuroscience, computational modeling is an effective way to gain insight into cortical mechanisms, yet the construction and analysis of large-scale network models-not to mention the extraction of underlying principles-are themselves challenging tasks, due to the absence of suitable analytical tools and the prohibitive costs of systematic numerical exploration of high-dimensional parameter spaces. In this paper, we propose a data-driven approach assisted by deep neural networks (DNN). The idea is to first discover certain input-output relations, and then to leverage this information and the superior computation speeds of the well-trained DNN to guide parameter searches and to deduce theoretical understanding. To illustrate this novel approach, we used as a test case a medium-size network of integrate-and-fire neurons intended to model local cortical circuits. With the help of an accurate yet extremely efficient DNN surrogate, we revealed the statistics of model responses, providing a detailed picture of model behavior. The information obtained is both general and of a fundamental nature, with direct application to neuroscience. Our results suggest that the methodology proposed can be scaled up to larger and more complex biological networks when used in conjunction with other techniques of biological modeling.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Background gamma rhythmicity and attention in cortical local circuits:: A computational study
    Börgers, C
    Epstein, S
    Kopell, NJ
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (19) : 7002 - 7007
  • [42] LOCAL CORTICAL CIRCUITS - AN ELECTRO-PHYSIOLOGICAL STUDY - ABELES,M
    NUNEZ, PL
    QUARTERLY REVIEW OF BIOLOGY, 1983, 58 (02): : 287 - 287
  • [43] Modulation of gamma-band activity across local cortical circuits
    Briggs, Farran
    Usrey, W. Martin
    FRONTIERS IN INTEGRATIVE NEUROSCIENCE, 2009, 3
  • [44] The functional asymmetry of auditory cortex is reflected in the organization of local cortical circuits
    Hysell V Oviedo
    Ingrid Bureau
    Karel Svoboda
    Anthony M Zador
    Nature Neuroscience, 2010, 13 : 1413 - 1420
  • [45] Statistical Analysis and Optimization of Asynchronous Digital Circuits
    Liu, Tsung-Te
    Rabaey, Jan M.
    2012 18TH IEEE INTERNATIONAL SYMPOSIUM ON ASYNCHRONOUS CIRCUITS AND SYSTEMS (ASYNC), 2012, : 1 - 8
  • [46] STATISTICAL-ANALYSIS OF ELECTRONIC CIRCUITS BY COMPUTER
    NOWAK, E
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 1975, CE21 (01) : 51 - 56
  • [47] An approach to the statistical analysis of CMOS integrated circuits
    Matarrese, G.
    Marzocca, C.
    Corsi, F.
    Alta Frequenza Rivista Di Elettronica, 2001, 13 (05): : 51 - 55
  • [48] Voxel Based Statistical Analysis of Cerebral Glucose Metabolism in Cat Cortical Deafness Model
    Kim, J. S.
    Lee, J. S.
    Lee, J. J.
    Lee, D. S.
    Park, M. H.
    Lee, H. J.
    Oh, S. H.
    Lim, S. M.
    Chung, J. K.
    Lee, M. C.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2005, 32 : S93 - S93
  • [49] CONNECTION ENSEMBLE MODEL OF LOCAL NEURAL CIRCUITS
    YAO, GZ
    WANG, M
    TAO, LM
    SCIENCE IN CHINA SERIES B-CHEMISTRY LIFE SCIENCES & EARTH SCIENCES, 1994, 37 (10): : 1198 - 1207
  • [50] Connection Ensemble Model of Local Neural Circuits
    姚国正
    王孟
    陶霖密
    Science China Chemistry, 1994, 37 (10) : 1198 - 1207