Elementary Operation Approach to Order Reduction for Roesser State-Space Model of Multidimensional Systems

被引:24
|
作者
Yan, Shi [1 ]
Xu, Li [2 ]
Zhao, Qinglin [1 ]
Tian, Yafei [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
[2] Akita Prefectural Univ, Dept Elect & Informat Syst, Akita 0150055, Japan
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
Elementary operation; multidimensional systems; order reduction; Roesser state-space model; REALIZATION; REPRESENTATIONS;
D O I
10.1109/TCSI.2013.2283996
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new order reduction approach for Roesser state-space model of multidimensional (n-D) systems based on elementary operations, by inversely applying the basic idea adopted in the new elementary operation approach to the Roesser model realization of n-D systems. It will be shown first that the n-D order reduction problem can be formulated into an elementary operation problem of an n-D polynomial matrix obtained from the coefficient matrices of the given Roesser model. Based on this problem formulation, a basic order reduction procedure and three techniques are presented, by which the intrinsic relationship among the blocks with respect to different variables can be investigated to achieve a further possible order reduction. It turns out that the new proposed approach is applicable to a wider class of Roesser models than the existing reduction approaches and provides a possible way to explore the equivalence between two systems. Examples are given to illustrate the main idea as well as the effectiveness of the proposed approach.
引用
收藏
页码:789 / 802
页数:14
相关论文
共 50 条
  • [21] Derivation and reduction of the singular Fornasini-Marchesini state-space model for a class of multidimensional systems
    Zhao, Dongdong
    Galkowski, Krzysztof
    Sulikowski, Bartlomiej
    Xu, Li
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (04): : 634 - 645
  • [22] A STATE-SPACE APPROACH FOR MODEL-REDUCTION OF 2-D SYSTEMS
    ZILOUCHIAN, A
    CARROLL, RL
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1992, 23 (06) : 957 - 974
  • [23] Realization of multidimensional systems in Fornasini-Marchesini state-space model
    Cheng, Hua
    Saito, Tatsuya
    Matsushita, Shin-ya
    Xu, Li
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2011, 22 (04) : 319 - 333
  • [24] Realization of multidimensional systems in Fornasini-Marchesini state-space model
    Hua Cheng
    Tatsuya Saito
    Shin-ya Matsushita
    Li Xu
    Multidimensional Systems and Signal Processing, 2011, 22 : 319 - 333
  • [25] A dual craig-bampton state-space approach for model reduction of damped systems
    Gruber, Fabian M.
    Rixen, Daniel J.
    Proceedings in Applied Mathematics and Mechanics, 2017, 17 (01): : 303 - 304
  • [26] Transmission Line Model with Frequency Dependency and Propagation Effects: a Model Order Reduction and State-Space Approach
    Garcia, Norberto
    Acha, Enrique
    2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 2812 - 2818
  • [27] A spatial canonical approach to multidimensional state-space identification for distributed parameter systems
    Fraanje, R
    Verhaegen, M
    Fourth International Workshop on Multidimensional Systems - NDS 2005, 2005, : 217 - 222
  • [28] State-space Model Generation of Distribution Networks for Model Order Reduction Application
    Li, Peng
    Yu, Hao
    Wang, Chengshan
    Ding, Chengdi
    Sun, Chongbo
    Zeng, Qiang
    Lei, Binghui
    Li, Haitao
    Huang, Xiaoyun
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [29] Model reduction for non-minimal state-space systems
    Murad, GA
    Postlethwaite, I
    Gu, DW
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3304 - 3310
  • [30] State-space realizations of MIMO 2D discrete linear systems - Elementary operation and variable inversion approach
    Galkowski, K
    INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (03) : 242 - 253