Many-body effects in semiconducting single-wall silicon nanotubes

被引:3
|
作者
Wei, Wei [1 ]
Jacob, Timo [1 ]
机构
[1] Univ Ulm, Inst Electrochem, D-89081 Ulm, Germany
来源
关键词
Bethe-Salpeter equation; excitons; GW approximation; many body effects; silicon; ELECTRON-HOLE EXCITATIONS; OPTICAL-EXCITATIONS; GREENS-FUNCTION; SPECTRUM; EXCITONS;
D O I
10.3762/bjnano.5.2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The electronic and optical properties of semiconducting silicon nanotubes (SiNTs) are studied by means of the many-body Green's function method, i.e., GW approximation and Bethe-Salpeter equation. In these studied structures, i.e., (4,4), (6,6) and (10,0) SiNTs, self-energy effects are enhanced giving rise to large quasi-particle (QP) band gaps due to the confinement effect. The strong electron-electron (e-e) correlations broaden the band gaps of the studied SiNTs from 0.65, 0.28 and 0.05 eV at DFT level to 1.9, 1.22 and 0.79 eV at GW level. The Coulomb electron-hole (e-h) interactions significantly modify optical absorption properties obtained at noninteracting-particle level with the formation of bound excitons with considerable binding energies (of the order of 1 eV) assigned: the binding energies of the armchair (4,4), (6,6) and zigzag (10,0) SiNTs are 0.92, 1.1 and 0.6 eV, respectively. Results in this work are useful for understanding the physics and applications in silicon-based nanoscale device components.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 50 条
  • [1] Intraband and intersubband many-body effects in the nonlinear optical response of single-wall carbon nanotubes
    Langlois, Benjamin
    Parret, Romain
    Vialla, Fabien
    Chassagneux, Yannick
    Roussignol, Philippe
    Diederichs, Carole
    Cassabois, Guillaume
    Lauret, Jean-Sebastien
    Voisin, Christophe
    [J]. PHYSICAL REVIEW B, 2015, 92 (15)
  • [2] Bandgap photoluminescence of semiconducting single-wall carbon nanotubes
    Lauret, JS
    Voisin, C
    Cassabois, G
    Roussignol, P
    Delalande, C
    Filoramo, A
    Capes, L
    Valentin, E
    Jost, O
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 21 (2-4): : 1057 - 1060
  • [3] Optical microcavity with semiconducting single-wall carbon nanotubes
    Gaufres, Etienne
    Izard, Nicolas
    Le Roux, Xavier
    Kazaoui, Said
    Marris-Morini, Delphine
    Cassan, Eric
    Vivien, Laurent
    [J]. OPTICS EXPRESS, 2010, 18 (06): : 5740 - 5745
  • [4] Dielectric response of aligned semiconducting single-wall nanotubes
    Fagan, J. A.
    Simpson, J. R.
    Landi, B. J.
    Richter, L. J.
    Mandelbaum, I.
    Bajpai, V.
    Ho, D. L.
    Raffaelle, R.
    Walker, A. R. Hight
    Bauer, B. J.
    Hobbie, E. K.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [5] Many-body effects on the electronic and optical properties of strained semiconducting carbon nanotubes
    Spataru, Catalin D.
    Leonard, Francois
    [J]. PHYSICAL REVIEW B, 2013, 88 (04):
  • [6] Angular momentum and topology in semiconducting single-wall carbon nanotubes
    Izumida, W.
    Okuyama, R.
    Yamakage, A.
    Saito, R.
    [J]. PHYSICAL REVIEW B, 2016, 93 (19)
  • [7] Vectorial growth of metallic and semiconducting single-wall carbon nanotubes
    Joselevich, E
    Lieber, CM
    [J]. NANO LETTERS, 2002, 2 (10) : 1137 - 1141
  • [8] Charge Transfer Events in Semiconducting Single-Wall Carbon Nanotubes
    Oelsner, Christian
    Antonia Herrero, M.
    Ehli, Christian
    Prato, Maurizio
    Guldi, Dirk M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (46) : 18696 - 18706
  • [9] Polarized Raman study of single-wall semiconducting carbon nanotubes
    Jorio, A
    Dresselhaus, G
    Dresselhaus, MS
    Souza, M
    Dantas, MSS
    Pimenta, MA
    Rao, AM
    Saito, R
    Liu, C
    Cheng, HM
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (12) : 2617 - 2620
  • [10] Optical properties of metallic and semiconducting single-wall carbon nanotubes
    Miyata, Yasumitsu
    Yanagi, Kazuhiro
    Maniwa, Yutaka
    Kataura, Hiromichi
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (10): : 2233 - 2238