An Energy-Efficient Precision-Scalable ConvNet Processor in 40-nm CMOS

被引:130
|
作者
Moons, Bert [1 ]
Verhelst, Marian [1 ]
机构
[1] Katholieke Univ Leuven, ESAT MICAS, Dept Elect Engn, B-3001 Leuven, Belgium
基金
比利时弗兰德研究基金会;
关键词
Approximate computing; ConvNet; convolutional neural network (CNN); deep learning; Dynamic-Voltage-Accuracy-Scaling; processor architecture; voltage scaling;
D O I
10.1109/JSSC.2016.2636225
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A precision-scalable processor for low-power ConvNets or convolutional neural networks is implemented in a 40-nm CMOS technology. To minimize energy consumption while maintaining throughput, this paper is the first to implement dynamic precision and energy scaling and exploit the sparsity of convolutions in a dedicated processor architecture. The processor's 256 parallel processing units achieve a peak 102 GOPS running at 204 MHz and 1.1 V. It is fully C-programmable through a custom generated compiler and consumes 25-287 mW at 204 MHz and a scaling efficiency between 0.3 and 2.7 effective TOPS/W. It achieves 47 frames/s on the convolutional layers of the AlexNet benchmark, consuming only 76 mW. This system hereby outperforms the state-of-the-art up to five times in energy efficiency.
引用
收藏
页码:903 / 914
页数:12
相关论文
共 50 条
  • [1] A Precision-Scalable Energy-Efficient Convolutional Neural Network Accelerator
    Liu, Wenjian
    Lin, Jun
    Wang, Zhongfeng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (10) : 3484 - 3497
  • [2] An energy-efficient high-speed CMOS hybrid comparator with reduced delay time in 40-nm CMOS process
    Huang, Sen
    Diao, Shengxi
    Lin, Fujiang
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2016, 89 (01) : 231 - 238
  • [3] An energy-efficient high-speed CMOS hybrid comparator with reduced delay time in 40-nm CMOS process
    Sen Huang
    Shengxi Diao
    Fujiang Lin
    [J]. Analog Integrated Circuits and Signal Processing, 2016, 89 : 231 - 238
  • [4] An Energy-Efficient Hybrid SAR-VCO ΔΣ Capacitance-to-Digital Converter in 40-nm CMOS
    Sanyal, Arindam
    Sun, Nan
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (07) : 1966 - 1976
  • [5] BitBlade: Area and Energy-Efficient Precision-Scalable Neural Network Accelerator with Bitwise Summation
    Ryu, Sungju
    Kim, Hyungjun
    Yi, Wooseok
    Kim, Jae-Joon
    [J]. PROCEEDINGS OF THE 2019 56TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2019,
  • [6] Scale-CIM: Precision-scalable computing-in-memory for energy-efficient quantized neural networks
    Lee, Young Seo
    Gong, Young -Ho
    Chung, Sung Woo
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 2023, 134
  • [7] An Integrated Real-Time FMCW Radar Baseband Processor in 40-nm CMOS
    Guo, Mohan
    Zhao, Dixian
    Wu, Qisong
    Wu, Jiarui
    Li, Diwei
    Zhang, Peng
    [J]. IEEE ACCESS, 2023, 11 : 36041 - 36051
  • [8] An Energy-Efficient ECG Processor in 45-nm CMOS Using Statistical Error Compensation
    Abdallah, Rami A.
    Shanbhag, Naresh R.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (11) : 2882 - 2893
  • [9] A 44.1TOPS/W Precision-Scalable Accelerator for Quantized Neural Networks in 28nm CMOS
    Ryu, Sungju
    Kim, Hyungjun
    Yi, Wooseok
    Koo, Jongeun
    Kim, Eunhwan
    Kim, Yulhwa
    Kim, Taesu
    Kim, Jae-Joon
    [J]. 2020 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2020,
  • [10] A 40-nm CMOS Piezoelectric Energy Harvesting IC for Wearable Biomedical Applications
    Wang, Chua-Chin
    Tolentino, Lean Karlo S.
    Chen, Pin-Chuan
    Hizon, John Richard E.
    Yen, Chung-Kun
    Pan, Cheng-Tang
    Hsueh, Ya-Hsin
    [J]. ELECTRONICS, 2021, 10 (06) : 1 - 13