Use of Bayesian networks to probabilistically model and improve the likelihood of validation of microarray findings by RT-PCR
被引:3
|
作者:
English, Sangeeta B.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Sch Med, Stanford Ctr Biomed Informat Res BMIR, Stanford, CA 94305 USAStanford Univ, Sch Med, Stanford Ctr Biomed Informat Res BMIR, Stanford, CA 94305 USA
English, Sangeeta B.
[1
]
Shih, Shou-Ching
论文数: 0引用数: 0
h-index: 0
机构:
Beth Israel Deaconess Med Ctr Res N, Dept Pathol, Boston, MA 02215 USAStanford Univ, Sch Med, Stanford Ctr Biomed Informat Res BMIR, Stanford, CA 94305 USA
Shih, Shou-Ching
[2
]
Ramoni, Marco F.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Sch Med, Harvard Partners Ctr Genet & Genom, Boston, MA 02115 USA
Harvard Univ, Sch Med, Harvard MIT Div Hlth Sci & Technol, Childrens Hosp Informat Program, Boston, MA 02115 USAStanford Univ, Sch Med, Stanford Ctr Biomed Informat Res BMIR, Stanford, CA 94305 USA
Ramoni, Marco F.
[4
,5
]
Smith, Lois E.
论文数: 0引用数: 0
h-index: 0
机构:
Childrens Hosp Boston, Dept Ophthalmol, Boston, MA 02115 USAStanford Univ, Sch Med, Stanford Ctr Biomed Informat Res BMIR, Stanford, CA 94305 USA
Smith, Lois E.
[3
]
Butte, Atul J.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Sch Med, Stanford Ctr Biomed Informat Res BMIR, Stanford, CA 94305 USAStanford Univ, Sch Med, Stanford Ctr Biomed Informat Res BMIR, Stanford, CA 94305 USA
Butte, Atul J.
[1
]
机构:
[1] Stanford Univ, Sch Med, Stanford Ctr Biomed Informat Res BMIR, Stanford, CA 94305 USA
[2] Beth Israel Deaconess Med Ctr Res N, Dept Pathol, Boston, MA 02215 USA
[3] Childrens Hosp Boston, Dept Ophthalmol, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Harvard Partners Ctr Genet & Genom, Boston, MA 02115 USA
[5] Harvard Univ, Sch Med, Harvard MIT Div Hlth Sci & Technol, Childrens Hosp Informat Program, Boston, MA 02115 USA
Though genome-wide technologies, such as microarrays, are widely used, data from these methods are considered noisy: there is still varied Success in downstream biological validation. We report a method that increases the likelihood Of Successfully validating microarray findings using real time RT-PCR. including genes at low expression levels and with small differences. We use a Bayesian network to identify the most relevant sources of noise based on the successes and failures in validation for an initial set of selected genes, and then improve Our subsequent selection of genes for validation based on eliminating these sources of noise. The network displays the significant Sources of noise in an experiment, and scores the likelihood of validation for every gene. We show how the method can significantly increase validation success rates. In conclusion, in this study, we have Successfully added a new automated step to determine the contributory sources of noise that determine successful or unsuccessful downstream biological validation. (C) 2008 Elsevier Inc. All rights reserved.