Monitoring correlated processes with binomial marginals

被引:40
|
作者
Weiss, Christian H. [1 ]
机构
[1] Univ Wurzburg, Inst Math, Dept Stat, D-8700 Wurzburg, Germany
关键词
binomial AR(1) models; statistical process control; control charts; case study; TIME-SERIES; COUNTS;
D O I
10.1080/02664760802468803
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Few approaches for monitoring autocorrelated attribute data have been proposed in the literature. If the marginal process distribution is binomial, then the binomial AR(1) model as a realistic and well-interpretable process model may be adequate. Based on known and newly derived statistical properties of this model, we shall develop approaches to monitor a binomial AR(1) process, and investigate their performance in a simulation study. A case study demonstrates the applicability of the binomial AR(1) model and of the proposed control charts to problems from statistical process control.
引用
收藏
页码:399 / 414
页数:16
相关论文
共 50 条
  • [21] Correlated binomial models and correlation structures
    Hisakado, Masato
    Kitsukawa, Kenji
    Mori, Shintaro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (50): : 15365 - 15378
  • [22] Bayesian analysis of a correlated binomial model
    Diniz, Carlos A. R.
    Tutia, Marcelo H.
    Leite, Jose G.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2010, 24 (01) : 68 - 77
  • [23] Maximum-entropy distributions of correlated variables with prespecified marginals
    Larralde, Hernan
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [24] The optimal choice of negative binomial charts for monitoring high-quality processes
    Albers, Willem
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (01) : 214 - 225
  • [25] BINOMIAL AND NEGATIVE BINOMIAL ANALOGS UNDER CORRELATED BERNOULLI TRIALS - COMMENT
    KATZ, RW
    AMERICAN STATISTICIAN, 1995, 49 (03): : 325 - 325
  • [26] Autoregressive processes with normal-Laplace marginals
    Jose, K. K.
    Tomy, Lishamol
    Sreekumar, J.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (15) : 2456 - 2462
  • [27] A nonparametric CUSUM chart for monitoring multivariate serially correlated processes
    Xue, Li
    Qiu, Peihua
    JOURNAL OF QUALITY TECHNOLOGY, 2021, 53 (04) : 396 - 409
  • [28] Probabilistic Monitoring of Correlated Sensors for Nonlinear Processes in State Space
    Zhao, Shunyi
    Shmaliy, Yuriy S.
    Ahn, Choon Ki
    Zhao, Chunhui
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (03) : 2294 - 2303
  • [29] Monitoring of serially correlated processes using residual control charts
    Osei-Aning, R.
    Abbasi, S. A.
    Riaz, M.
    SCIENTIA IRANICA, 2017, 24 (03) : 1603 - 1614
  • [30] Two types of correlated binomial-negative binomial states and their nonclassical properties
    Fan, HY
    Liu, NL
    Li, H
    MODERN PHYSICS LETTERS B, 1999, 13 (29-30): : 1047 - 1054