Lattice strains in crystals under uniaxial stress field

被引:88
|
作者
Uchida, T
Funamori, N
Yagi, T
机构
[1] Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku
关键词
D O I
10.1063/1.362920
中图分类号
O59 [应用物理学];
学科分类号
摘要
An expression for the lattice strains in a polycrystalline specimen under uniaxial stress field has been extended for all crystal systems. Apparent Miller indices (HKL) are introduced from Miller indices (hkl) and lattice parameters. The lattice strain epsilon(l(1)l(2)l(3)) of the direction l(1)l(2)l(3), normal to the plane HKL, can be uniquely expressed for all crystal systems as follows: epsilon(l(1)l(2)l(3))={alpha beta(l(1)l(2)l(3))+(1 - alpha)[1/(3K(V))]}sigma(p)+alpha(-(t/3)(1-3 cos(2) psi){(1/2)[3/E(l(1)l(2)l(3)) -beta(l(1)l(2)l(3))]})+(1 - alpha)(-(t/3) (1 - 3 cos(2) psi)[1/(2G(V))]}, where beta(l(1)l(2)l(3)) and E(l(1)l(2)l(3)) denote the linear compressibility and the Young modulus, respectively. Bulk modulus K-V and shear modulus G(V) are values for isostrain model. Variable psi is the angle between loading axis and the normal of the plane HKL. The first term is the strain caused by the hydrostatic stress component sigma(p). The second and third term, strains caused by the differential stress t, correspond to the isostress and the isostrain model, respectively. The parameter alpha takes a value between 0 (isostrain) and 1 (isostress). A method to determine the hydrostatic stress component sigma(p) differential stress t, and the parameter alpha from powder x-ray-diffraction is discussed. (C) 1996 American Institute of Physics.
引用
收藏
页码:739 / 746
页数:8
相关论文
共 50 条
  • [21] INTERFERENCE FIELD OF BIFOCAL LENS OF UNIAXIAL CRYSTALS
    OSIPOV, YV
    OSIPOV, VY
    SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1991, 58 (01): : 20 - 23
  • [22] NUCLEATION FIELD IN UNIAXIAL FERROMAGNETIC SINGLE CRYSTALS
    FILIPPOV, BN
    PHYSICS OF METALS AND METALLOGRAPHY, 1966, 22 (03): : 22 - &
  • [23] THE LOCAL FIELD IN UNIAXIAL LIQUID-CRYSTALS
    MINKO, AA
    RACHKEVICH, VS
    YAKOVENKO, SY
    LIQUID CRYSTALS, 1989, 4 (01) : 1 - 19
  • [24] X-RAY-MEASUREMENT OF LATTICE STRAINS IN TEXTURED LOW-CARBON STEEL UNDER UNIAXIAL LOADING
    CHANG, CH
    KOO, YM
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1995, 26 (03): : 629 - 632
  • [25] MODULATION VECTOR ROTATION IN INCOMMENSURATE CRYSTALS UNDER FIELD OR STRESS
    SAINTGREGOIRE, P
    PEREZ, A
    FERROELECTRICS, 1990, 105 : 321 - 326
  • [26] Uniaxial stress tuning of geometrical frustration in a Kondo lattice
    Kuechler, R.
    Stingl, C.
    Tokiwa, Y.
    Kim, M. S.
    Takabatake, T.
    Gegenwart, P.
    PHYSICAL REVIEW B, 2017, 96 (24)
  • [27] FORMATION OF INTERNAL LATTICE STRAINS IN STEELS DURING PERMANENT UNIAXIAL ELONGATION,
    BOLLENRATH F
    HAUK V
    OHLY W
    1970, 41 (05): : 445 - 450
  • [28] In situ lattice strains analysis in titanium during a uniaxial tensile test
    Gloaguen, D.
    Girault, B.
    Fajoui, J.
    Klosek, V.
    Moya, M. -J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 662 : 395 - 403
  • [29] MODULATION SPECTROSCOPY UNDER UNIAXIAL STRESS
    POLLAK, FH
    SURFACE SCIENCE, 1973, 37 (01) : 863 - 895
  • [30] Specific heat under uniaxial stress
    Del Cerro, J
    Gallardo, MC
    Jimenez, J
    PHASE TRANSITIONS, 1997, 64 (1-2) : 25 - 44