Existence results for impulsive fractional q-difference equations with anti-periodic boundary conditions

被引:4
|
作者
Ahmad, Bashir [1 ]
Tariboon, Jessada [2 ]
Ntouyas, Sotiris K. [1 ,3 ]
Alsulami, Hamed H. [1 ]
Monaquel, Shatha [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[2] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
[3] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
来源
关键词
quantum calculus; impulsive fractional q-difference equations; existence; uniqueness; fixed point theorem; POSITIVE SOLUTIONS;
D O I
10.1186/s13661-016-0521-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a Caputo type anti-periodic boundary value problem of impulsive fractional q-difference equations involving a q-shifting operator of the form (a)Phi(q)(m) = qm + (1 - q)a. Concerning the existence of solutions for the given problem, two theorems are proved via Schauder's fixed point theorem and the Leray-Schauder nonlinear alternative, while the uniqueness of solutions is established by means of Banach's contraction mapping principle. Finally, we discuss some examples illustrating the main results.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条