Directional Algebraic Reconstruction Technique for Electrical Impedance Tomography

被引:2
|
作者
Kim, Ji Hoon [2 ]
Choi, Bong Yeol [2 ]
Ijaz, Umer Zeeshan [3 ]
Kim, Bong Seok [4 ]
Kim, Sin [5 ]
Kim, Kyung Youn [1 ]
机构
[1] Cheju Natl Univ, Dept Elect Engn, Cheju 690756, South Korea
[2] Kyungpook Natl Univ, Sch Elect Engn & Comp Sci, Taegu 702701, South Korea
[3] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[4] Cheju Natl Univ, BK21 Clean Energy Training & Educ Ctr, Cheju 690756, South Korea
[5] Cheju Natl Univ, Dept Nucl & Energy Engn, Cheju 690756, South Korea
关键词
Electrical impedance tomography; Directional algebraic reconstruction technique; Port resistivity line; Weighting matrix; CURRENT COMPUTED-TOMOGRAPHY; IMAGE-RECONSTRUCTION; ELECTRODE MODELS; ALGORITHMS;
D O I
10.3938/jkps.54.1439
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We assume that the resistance matrix can be found in electrical impedance tomography (EIT) from the assumption of linear dependence between the voltages and the currents. With the help of the resistance matrix and the transfer impedance between the electrodes, a directional algebraic reconstruction technique (DART) is proposed for EIT. The goal is to reconstruct the resistivity distribution by weighting the matrices that are obtained by calculating the orthogonal distance of the underlying mesh elements from the neighboring port resistivity lines. These weighting matrices, which only depend on the topology of the underlying mesh, can be calculated offline and result in a computationally efficient online procedure with a reasonable image reconstruction performance. Simulation results are provided to validate this approach.
引用
收藏
页码:1439 / 1447
页数:9
相关论文
共 50 条
  • [31] A direct reconstruction method for anisotropic electrical impedance tomography
    Hamilton, S. J.
    Lassas, M.
    Siltanen, S.
    INVERSE PROBLEMS, 2014, 30 (07)
  • [32] Image reconstruction with discontinuous coefficient in electrical impedance tomography
    Rymarczyk, Tomasz
    Filipowicz, Stefan F.
    Sikora, Jan
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 149 - 151
  • [33] Two ANN reconstruction methods for electrical impedance tomography
    Ratajewicz-Mikolajczak, E
    Shirkoohi, GH
    Sikora, J
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2964 - 2967
  • [34] COMPARING RECONSTRUCTION ALGORITHMS FOR ELECTRICAL IMPEDANCE TOMOGRAPHY.
    Yorkey, Thomas J.
    Webster, John G.
    Tompkins, Willis J.
    IEEE Transactions on Biomedical Engineering, 1987, BME-34 (11) : 843 - 852
  • [35] Measurement Methods and Image Reconstruction in Electrical Impedance Tomography
    Filipowicz, Stefan F.
    Rymarczyk, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (06): : 247 - 250
  • [36] Data errors and reconstruction algorithms in electrical impedance tomography
    Breckon, W.R.
    Pidcock, M.K.
    Clinical Physics and Physiological Measurement, 1988, 9 (SUPPL. A): : 105 - 109
  • [37] Supershape augmented reconstruction method for electrical impedance tomography
    Gu, Danping
    Liu, Dong
    Deng, Jiansong
    Du, Jiangfeng
    2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,
  • [38] Block-sparse Reconstruction for Electrical Impedance Tomography
    Wang Qi
    Zhang Pengcheng
    Wang Jianming
    Li Xiuyan
    Lian Zhijie
    Chen Qingliang
    Chen Tongyun
    Chen Xiaojing
    He Jing
    Duan Xiaojie
    Wang Huaxiang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (03) : 676 - 682
  • [39] A new image reconstruction method for electrical impedance tomography
    Hou, WD
    Mo, WL
    BIOMEDICAL PHOTONICS AND OPTOELECTRONIC IMAGING, 2000, 4224 : 64 - 67
  • [40] Sparsity reconstruction in electrical impedance tomography: An experimental evaluation
    Gehre, Matthias
    Kluth, Tobias
    Lipponen, Antti
    Jin, Bangti
    Seppanen, Aku
    Kaipio, Jari P.
    Maass, Peter
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (08) : 2126 - 2136